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Introduction



Evidential Learning and Reasoning: quantifying aleatory and epistemic uncertainty in
reasoning and learning while using very efficient approximations based upon
the idea of updating the Bayesian posterior in light of further evidence
collected in favour (or against) a hypothesis



fl  Even in simple collaboration scenarios, e.g. those in which an Al system assists
a human operator with predictions, the success of the team hinges on the human
correctly deciding when to follow the recommendations of the Al system and when
to override them. [...]

Extracting benefits from collaboration with the Al system depends on the human
developing insights (i.e, a mental model) of when to trust the Al system with its
recommendations. [... ]

If the human mistakenly trusts the Al system in regions where it is likely to err,
catastrophic failures may occur. 1

Bansal, Gagan, et al. “Beyond Accuracy: The Role of Mental Models in Human-Al Team Performance.” AAAI
Conference on Human Computation and Crowdsourcing. 2019.



Cuidelines for Human-Al Interaction

Initially Make clear what the system can do e Make clear how well the system can
do what it can do

During tnteraction Time services based on context e Show contextually relevant
information e Match relevant social norms e Mitigate social biases

When wrong Support efficient invocation e Support efficient dismissal e Support
efficient correction e Scope services, when in doubt e Make clear why the
system did what it did

Over time Remember recent interactions e Learn from user behaviour e Update and
adapt cautiously e Encourage granular feedback e Convey the
consequences of user actions e Provide global controls e Notify users
about changes

https://aka.ms/aiguidelines

S. Amershi et. al, “Guidelines for Human-Al Interaction,” CHI 2019


https://aka.ms/aiguidelines
https://aka.ms/aiguidelines

Misclassification of the white side of a trailer as bright sky: this caused a car operating with
automated vehicle control systems (level 2) to crash against a tractor-semitrailer truck near
Williston, Florida, USA on 7th May 2016.

The car driver died due to the sustained injury.

The car manufacturer stated that the “camera failed to recognize the white truck against a

bright sky."”

“http://tiny.cc/2tbduy


http://tiny.cc/2tb4uy

Requirements of Trustworthy Al

Human agency and oversight

lechnical robustness and safety

Privacy and data governance
Transparency

Diversity, non-discrimination, and fairness
Societal and environmental wellbeing

Accountability

*EUROPEAN COMMISSION, 2019. High-Level Expert Group on Artificial Intelligence.
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A primer in Bayesian Statistics
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X (resp. Y) be a discrete random variable that can take values x; with i =1,..., M (resp. y;
withj=1,..., L)

The probability that X will take the value x; and Y will take the value y; is written
p(X = x;, Y = y;) and is called the joint probability of X = x; and Y = y;.



Sum rule or marginalisation:

Product rule:
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13 “Figs from Bishop, Christopher M. 2006. Pattern Recognition and Machine Learning. Berlin, Heidelberg:



Sum and product rules apply to general random variables, not only discrete ones.
pX)=> pX.Y)
%

p(X.Y) = p(Y[X)p(X)



X and Y are said to be independent if p(X, Y) = p(X)p(Y), te. p(X|Y) = p(X) and
pLY|X) = p(Y).



X be a continuous random vartable

b
plx € (a, b)) = / plx)dx

p(x) >0

/: p(x)dx =1

The cumulative distribution function is defined by:

(12)



“Fig from Bishop, Christopher M. 2006. Pattern Recognition and Machine Learning. Berlin, Heidelberg:
Springer-Verlag.

Freepikcom
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Given several continuous variables x = (x1, ..., xp)', then we can define a joint probability

density p(x) = p(x1, ..., xp) such that the probability of x falling in an infinitesimal volume

0x containing the point x is given by p(x)ox, and

and

(13)

(14)



Sum and product rules for continuous random variables take the form:

plx) = / plx, y)dy

p(x.y) = ply|x)p(x)
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The weighted average of the function f(x) under a probability distribution p(x), or

expectation of f(x) is:
E[f] =) p(x)f(x)

E[f] = /p(x)f(x)dx

It can be approximate from N points drawn from the distribution

1 N
Elf)~ & > Flxn)
n=1

In the case of functions of several variables,

EJf(x,y)| =) px)f(x.y)

(19)

(20)
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Variance of f(x)

varf] = E[(f(x) — E[f (x))?]

var(f] = E[f (x)?] — E[f (x)]
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For two random variables, the covariance expresses the extent to which they vary together,

and is defined by:
covix, y] = E, ,[xy] — E[x[E[y]

[n the case of vectors of random variables:

cov[x, y] = ]Ex,y[XyT] — E[X]E[YW

Note that cov|x] = cov[x, x].

(24)

(25)



Bayes theorem

where

_ PX[Y)p(Y)
p(Y|X) X

p(X) =) p(X|Y)p(Y)
Y



p(H) Probability that a person with no known risk behaviour is infected with HIV e
(base rate): 0.01%
T | H) Probability that a test returns positive if the person is infected with HIV
P Y | [
(sensitivity): 99.9%

p(T | H) Probability that a test returns negative if the person is not infected with HIV
(specificity): 99.99%

“Cerd Gigerenzer, Reckoning With Risk: Learning to Live With Uncertainty, Gardners Books, 2003
24



p(H) Probability that a person with no known risk behaviour is infected with HIV
(base rate): 0.01%

p(T | H) Probability that a test returns positive if the person is infected with HIV

(sensitivity): 99.9%
p(T | H) Probability that a test returns negative if the person is not infected with HIV

(specificity): 99.99%
P(T | H)- p(H)

p(T)
p(T | H) plH)
p(T | H)p(H) + p(T | H) - p(H)
1

1+ p(T|I-:})»p(H) “(1=p(T | H)- (1= p(H))

pIH|T) =

“Cerd Gigerenzer, Reckoning With Risk: Learning to Live With Uncertainty, Gardners Books, 2003
24



image: Freepikcom

p(H) Probability that a person with no known risk behaviour is infected with HIV
(base rate): 0.01%

p(T | H) Probability that a test returns positive if the person is infected with HIV
(sensitivity): 99.9%

p(T | H) Probability that a test returns negative if the person is not infected with HIV
(specificity): 99.99%

pIH|T) = . L
L+ s (L= A(T [ ) - (L= p(H))
1 1
Dl RO T
B 11
1+ 9922 2

“Cerd Gigerenzer, Reckoning With Risk: Learning to Live With Uncertainty, Gardners Books, 2003
24
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Imagine 10,000 people who 10,000
are not in any known risk people

category. One is infected

(base rate) and will test / \

positive with practical

certainty (sensitivity). Of ! 9.999

the 9,999 people who are HIV no HIV

not infected, another one / \

will also test positive (false

positive rate). So we can 1 0 1 9,998
expect that about two pos  nheg pos neg

people will test positive. (false pos)

*Cerd Gigerenzer, Reckoning With Risk: Learning to Live With Uncertainty, Gardners Books, 2003



Given the parameters of our model w, we can capture our assumptions about w, before
observing the data, in the form of a prior probability distribution p(w). The effect of the
observed data D = {t1, ..., ty} is expressed through the conditional p(D|w), hence Bayes

theorem takes the form:

likelthood prior

(D]w) p(w)

_ p(D|w) p(w

plwiD) = P00 (29)

posterior o< likelihood - prior (30)
p(D) = | p(D]w)plw)dw (1)

It ensures that the posterior distribution on the left-hand side is a valid probability density and integrates to one.

26



Frequentist paradigm ) ‘ '
_ _ ' Bayesian paradigm
e w is considered to be a fixed parameter,

A o e There is only one single data set D (the
whose values is determined by some

i . i . one observed) and the uncertainty in the
form of estimator, e.g. the maximum

. ) . ) parameters is expressed through a
likelihood in which w is set to the value para | gh 4

. probability distribution over w.
that maximises p(D|w)

. : : e The inclusion of prior knowledge arises
e Error bars on this estimate are obtained

o o naturally: suppose that a fair-looking
by considering the distribution of

possible data sets D coin is tossed three times and lands
clLd .

heads each time. A classical maximum

* The negative log of the likelthood likelthood estimate of the probability of

function is called an error function: the . .
landing heads would give 1.

negative log is a monotonically There are cases where you want to

decreasing function hence maximising i L
reduce the dependence on the prior,

the likelihood is equivalent to . . . .
hence using noninformative priors.

minimising the error.



Binary vartable: Bernoulli

Let us consider a single binary random variable x € {0, 1}, e.g. flipping coin, not necessary
fair, hence the probability is conditioned by a parameter 0 < p < 1

plx = 1|py) = p (32)

The probability distribution over x is known as the Bernoulli distribution:

Bern(x|y) = (1 — )~ (33)

E[x| = u (34)

28



Now suppose that we have a data set of observations x = (xq, ..., xn)! drawn
independently from a Bernoulli distribution (iid) whose mean 1 is unknown, and we would
like to determine this parameter from the data set.

N N
p(DIu) = [ | ptxale) = [ ]re(@ =t (36)
n=1 n=1
Let's maximise the (log)-likelihood to identify the parameter (log simplifies and reduces risks

of underflow):

N

N
Inp(D|y) = n p(xnp|t) = Z{X,, N+ (1 —x,) In(1l — )} (37)
-1

n n=1

29
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The log likelthood depends on the N observations x, only through their sum E Xp, hence

n
the sum provides an example of a sufficient statistics for the data under this distribution



d

—Lnp@D|p) = 0
du
n 1- n
0_lom
=i —u
N - (38)
SRt
L i)
N
ZX,, = Ny
n=1
1N
= > X (39)

n=1

aka sample mean. Risk of overfit: consider to toss the coin three times and each time is head
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In order to develop a Bayesian treatment to the overfit problem of the maximum likelthood
estimator for the Bernoulli. Since the likelihood takes the form of the product of factors of
the form (1 — )1, if we choose a prior to be proportional to powers of 1 and (1 — 1) then
the posterior distribution, proportional to the product of the prior and the likelihood, will

have the same functional form as the prior. This property is called conjugacy.



Binary variables: Beta distribution

[a+b) , .
Beta(u|a, b) = ria)r(b; A1 — )bt
with o
M(x) = / v levdu
0
a
Eivl = a+b
ab

varlu] = (@a+b2a+b+1)

a and b are hyperparameters controlling the distribution of parameter p.

33
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Considering a beta distribution prior and the Bernulli likelihood function, and given
[=N-—m

m+afl(1 _ I)/+b71

plulm, 1, a, b) o< p L

Hence p(u|m, 1, a, b) is another beta distribution and we can rearrange the normalisation

coefficient as follows:

[(m+a+/+ b)um“’*l

I+b—1
Fmtarit o) T

plulm, 1, a, b) =

(47)

(48)
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# Day

Phenomenon

- O 00 N O O N W N =

M T M m m o m o m M

;. true—unknown—probability of the phenomenon in a
given period of time

Let y be the number of occurrence of the phenomenon per
period of time (m = 2)

Likelihood: f(y|m)=m-7-(1—m)---(1—n) =% (1 —x)®
glly) o< glo) - flylm)
The conjugate of a binomial is the Beta distribution. If:

g(m: a b) = Beta(a, b) = %/—,Hu e

then: g(rr|y) = Beta(m + a, | + b)

If a= b =1 (uniform prior), then ‘g(ﬁ\y) = Betaim + 1,/ +1) ‘

In the example, g(71|m = 2,/ = 8) = Beta(3,9)



Xy ~ Beta(3,9) X, ~ Beta(21,81) X3 ~ Beta(201, 801)

E[X1] = 0.2500 E[X,] = 0.2059 E[X3] = 0.2006

Var(X1) = 1.4423 - 102 Var(X,) = 15873 -103 Var(X3) = 1.5988 - 10~*
95% Confidence Interval: 95% Confidence Interval: 95% Confidence Interval:
[0.0602, 0.5178] [0.1336, 0.2891] [0.1764, 0.2259]

Although E[Xi] = E[X5] = E[X3] = 0.2

they represent remarkably different random variables

36 * Y-axes of the graphs are misaligned for better graphical representation



Epistemic vs Aleatoric uncertainty

37

Aleatoric uncertainty

Variability in the outcome of an experiment
which is due to inherently random effects
(e.g. flipping a fair coin): no additional
source of information but Laplace's daemon
can reduce such a variability.

Epistemic uncertainty

Epistemic state of the agent using the model,
hence its lack of knowledge that—in
principle—can be reduced on the basis of
additional data samples.

It is a general property of Bayesian learning
that, as we observe more and more data, the
epistemic uncertainty represented by the
posterior distribution will steadily decrease
(the variance decreases).
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https://tinyurl.com/5hets659


https://tinyurl.com/5hets659
https://tinyurl.com/5hets659

Multinomial variables: categorical distribution

Let us suppose to roll a dice with K = 6 faces. An observation of this variable x equivalent
to x3 = 1 (e.g. the number 3 with face up) can be:

x=1(0,0,1,0,0,0)" (49)
K
Note that such vectors must satisfy Zxk =1
k=1
K
plx|u) = [ |ut (50)
k=1
where p = (11, ..., uK>T, nad the parameters p are such that px > 0 and Zuk =1.
k

Generalisation of the Bernoulli

39
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N K
p(Dlw) = [ ][ ]w* (52)
n=1 k=1
The likelihood depends on the N datapoints only through the K quantities
M=) Xnk (53)
n

which represent the number of observations of xx = 1 (e.g. with k = 3, the third face of the
dice). These are called the sufficient statistics for this distribution.
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Finding the maximum likelihood requires a Lagrange multiplier that

K K
kallwuk+)\ Zuk—l) (54)
k=1 k=1
Hence
ML Mk
= — 55

which is the fraction of N observations for which x, = 1.



Lagrange multiplier @6

image: Freepikcom

Vg(x) must be orthogonal to the surface.
Consider a point x that lies on the surface and a

Vf(x) nearby point x + € that also lies on the surface.
The Taylor expansion around x gives

XA glx +€) =~ g(x) + £' Vg(x).

Because both x and x + € lie on the surface,
g(x) = g(x + €), hence €' Vg(x) = 0. Because ¢ is
parallel to the surface, Vg must be normal to the
surface.

Given the point x*, lying on the surface, be a maximum
for f. Vf must also be normal to the surface.

Thus Vf and Vg are parallel (or anti-parallel) vectors,
and so there must exist a parameter A such that
VFf+AVg=0.

“Fig from Bishop, Christopher M. 2006. Pattern Recognition and Machine Learning. Berlin, Heidelberg:

Springer-Verlag.



Multinomial variables: the Dirichlet distribution

The Dirichlet distribution is the generalisation of the beta distribution to K dimensions.

Dir(p|a) = _ Moo |£| okt (56)
M= Tlan) o) |1

such that Z“k =1 a={(0a,..., O(K>T, a, > 0 and
K

K
a =) a (57)
k=1

43
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Considering a Dirichlet distribution prior and the categorical likelthood function, the
posterior is then:

p(uD,a) = Dir(pla+ m)=
K
_ r(ao + N |_| ax+mg—1
oy + m1)---T(ak + mk)

The uniform prior is given by Dir(u|1) and the Jeffreys’ non-informative prior is given by
Dir(u](0.5,...,05)").

The marginals of a Dirichlet distribution are beta distributions.



Evidential Reasoning
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burglary.

earthquake.
hears_alarm(john) .
alarm :- burglary.
alarm :- earthquake.
calls(john)

evidence(calls(john)).

:- alarm,

query (burglary) .

hears_alarm(john) .

alarm <> burglary V earthquake
calls(john) <> alarm A hears_alarm(john)
calls(john)

“D. Fierens, et. al. ‘Inference and Learning in Probabilistic Logic Programs Using Weighted Boolean Formulas'

TPLP 2015.
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alarm <> burglary V earthquake

calls(john) <> alarm A hears_alarm(john)
calls(john)

alarm — burglary V earthquake

alarm < burglary V earthquake

calls(john) — alarm

calls(john) — hear_alarm(john)
calls(john) « alarm A hear_alarm(john)
calls(john)

—alarmV burglary V earthquake

—burglary V alarm

—earthquake V alarm

—calls(john) V alarm

—calls(john) V hear_alarm(john)

—alarmV —hear_alarm(john) V calls(john)
calls(john)



CNF
(alarm V =burglary) A
(alarm V —calls(john)) A
(alarm V —earthquake) A
(hear_alarm(john) V —calls(john))A
(burglary V earthquake V —alarm) A
(calls(john) V —alarmV —hear_alarm(john)) A
calls(john)

NNF

(alarm V (-burglary A —earthquake)) A

((alarm A hear_alarm(john)) V ~calls(john)) A
(burglary V earthquake V —alarm) A
(calls(john) V —alarmV —hear_alarm(john)) A
calls(john)
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A sentence in negation normal form (NNF) over a set of propositional variables V is a rooted,
directed acyclic graph where each leaf node is labeled with true (T), false (L), or a literal of
a variable in V, and each internal node with disjunction (V) or conjunction (A).

Decomposable: for each conjunction node no two children ¢; and ¢; share any variable.

Deterministic: for each disjunction node each pair of different children ¢; and ¢; is logically
contradictory, that is ¢; A ¢; = L for i # j; Le, only one child can be true at any time.

Smooth: for each disjunction nodeeach disjunct ¢; mentions the same variables,
Vars(¢;) = Vars(¢;) for i + j.

It is hard to ensure decomposability. It is also hard to ensure determinism while preserving
decomposability. Yet any sentence in NNF can be smoothed in polytime, while preserving
decomposability and determinism.

“Darwiche and Marquis, A Knowledge Compilation Map, JAIR 17 (2002) 229-264
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Decomposable: for each conjunction node
no two children ¢; and ¢; share any
variable.

Deterministic. for each disjunction node
each pair of different children ¢; and ¢;
is logically contradictory, that is

i A @j = L for i + j; Le, only one child
can be true at any time.

Smooth: for each disjunction node each
disjunct ¢; mentions the same variables,
Vars(¢;) = Vars(¢;) for i + j.

“Darwiche and Marquis, A Knowledge Compilation Map, JAIR 17 (2002) 229-264




Model counting (CT) is important

Givena querygC LandZ(q)={l|1& M(T) N g C I} the set of interpretations where
the query is true, then the pr obablllstlc inference task is:

PROB(q Z [ ]e(). (1)

1€Z(q) Iel

*A. Kimmig, G. Van den Broeck, and L. De Raedt. Algebraic model counting. Journal of Applied Logic, 22:46-62,
2017.

51
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[ Notation Query |
CcO polytime consistency check
NNF VA polytime validity check
CE polytime clausal entailment check
IM polytime implicant check
CONGE, ME EQ polytime equivalence check
SE polytime sentential entailment check
d-NNF @E DNM LNM I CT polytime model counting
VA, IM.[ET] b £ ME polytime model enumeration
BDD d-DNNF | e? [ L [CO[VA|CE|IM]EQ]SE[CT]| ME |
VA, IM NNF o o o o o o o °
DNNF
FBDD |& |Sd'DNNF| | DNF | | CNF | d-NNF \o/ Z \o/ 2 Z Z Z \o/
b s-NNF o o o o o o o o
= £-NNF o o o o o o o o
OBDD d-DNNF v v vV |V ? ° Vv Vv
GO v [ vV [V V] Z e vV
SE EQ.SE VA, IM,| EQ SE  CO,CE EQ,| SE.ME BDD ° ° ° o ° ° ° °
OBDD. MODS [ e ] [ A ] oz RV IRV IRV VA A N VA A
0BDD VIVIVIVIV]Io V]V
AN VIV IV IVIVIVIVIV
Ly — L> means that Ly is a proper subset of L. gi’; v ° v ° ° ° ° v
Next to each subset, polytime queries supported by the subset but not T \O/ \\; \O/ y f/ \O/ Z \O/
by any of its proper supersets. P Vi Y Vi v Vi Vi ° V
[Moos || v [ VIV IVIVIVIVI]V

“Darwiche and Marquis, A Knowledge Compilation Map, JAIR 17 (2002) 229-264



NNF

€O, E,ME
d-NNF sNNF DNNF f-NNF
va M ET]
BDD d-DNNF [ £e?
vAm
FBDD |’ laonng [ onF | [ onF |
EQ
OBDD
SE EQ SE VA,IM[EQ SE CO,CEEQ,]| SEME
0BDD. [moos] [p ] [ A ]
Ly — L> means that Ly is a proper subset of Lz. Ly — L indicates that Ly is strictly more succint (space
Next to each subset, polytime queries supported by the efficient) than La. Dotted arrows indicate unkwnown
subset but not by any of its proper supersets. relationships.

“Darwiche and Marquis, A Knowledge Compilation Map, JAIR 17 (2002) 229-264



Sentential Decision Diagrams l@

(25 and [16,24] : SDDs provide a canonical
representation of a
propositional sentence, ie. there
is a unique SDD for any
propositional sentence under a
given variable order.
Manipulating SDDs is thus
easter.

However, they are less succint
than d-DNFs.

P(d-DNNF)

“Fig. from Bollig, B., Buttkus, M. On the Relative Succinctness of Sentential Decision Diagrams. Theory Comput
Syst 63, 1250-1277 (2019).
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0.1::burglary.

0.2::earthquake. evidence(calls(john)).

0.7::hears_alarm(john). query(burglary).

“D. Fierens, et. al. 'Inference and Learning in Probabilistic Logic Programs Using Weighted Boolean Formulas'

TPLP 2015.

@z

PR ) =07
Aa=1

3
B ) =07
h

plb)=01 ple)=02
A=1 A=




Ha)=t ar=1 (=
M=1 N- o
o) =1
X=1
onp) =07 Anp) =07
N1 ol
a1 N=1 a1 X= N1
1::burglary. 0.7::hears_alarm(john). evidence(calls(john)). plburglary | calls(john)) = p(burglary A C§lls(john))
0.2::earthquake. ... query (burglary) . plcalls(john))

“D. Fierens, et. al. ‘Inference and Learning in Probabilistic Logic Programs Using Weighted Boolean Formulas'
TPLP 2015.



Connection with Sum-Product Networks

An SPN consists of a rooted, directed, acyclic graph. Each leaf in the SPN graph is a
tractable distribution over a single random variable. Each interior node is either a sum node,
which computes a weighted sum of its children in the graph, or a product node, which
computes the product of its children.

For discrete domains, every decomposable and smooth NNF can be represented as an
equivalent SPN with fewer or equal nodes and edges.

1. If the root is not a sum node, set the root to a new sum node whose single child is the former root.
2. For each sum node, set the initial weights of all outgoing edges to 1.

3. For each leaf, find the first sum node on each path to the root and multiply its outgoing edge
weight along that path by the parameter value. (Do not multiply the same edge weight by any
given parameter more than once, even if that edge occurs in multiple paths to the root.)

4. Replace each leaf with a deterministic univariate distribution, P(v) = 1.

*Rooshenas and Lowd, Learning Sum-Product Networks with Direct and Indirect Variable Interactions,
ICML2014.
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More and more research in the field...

Kisa, D., Van den Broeck, G., Choi, A. and Darwiche, A, 2014, May. Probabilistic sentential
decision diagrams. In Fourteenth International Conference on the Principles of Knowledge
Representation and Reasoning.

Dang, M., Vergari, A, Broeck, G.. (2020). Strudel: Learning Structured-Decomposable
Probabilistic Circuits. Proceedings of the 10th International Conference on Probabilistic
Graphical Models, 138:137-148.



Identifier Beta parameters

wy :: burglary .

w3 earthquake . Wi Beta(co, 1) False
ws::hears_alarm (john). wy Beta(1, c0) True
alarm :— burglary. wo Beta(2, 18) A burglary happened
alarm :— earthquake. Wy Beta(18, 2) A burglary did not happen
calls (john) :— alar.m A\ w3 Beta(2, 8)
. hea|siala|.m(John ) s Beta(8, 2)
evidence (calls (john)).
. A Wa Beta(3.5, 1.5)
query(burglary ).
Wy Beta(1.5, 3.5)

*Cerutti, Kaplan, Kimmig, Sensoy, Handling Epistemic and Aleatory Uncertainties in Probabilistic Circuits,
Machine Learning, 2022
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Let n be a @-gate over C nodes, its children

Let n be a ®-gate over C nodes, its children

X0 [ ]EXc.
ceC
cov[Xy] = Z Z X ]E[X cov[Xc,Xc,],
ceCceC <
cov[Xn, Xz] = Z E[Xn]cov[Xc,Xz] for z € Na\ {n}.
ceC ¢
Conditioning:
X ~ E[Xr]
. {77] = OEXG)
2
cov [i:] = ﬁCOV[Xr] + Ei}l cov[Xz] — 2 ]}?[)):]]3 cov[ X, Xz).

*Cerutti, Kaplan, Kimmig, Sensoy, Handling Epistemic and Aleatory Uncertainties in Probabilistic Circuits,
Machine Learning, 2022
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Execution Times
(=]
L

09254 o
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0.875 4

0.850 / 0

0.8254

0.800 4

Correlation with Golden Standard

10 500 7T 1000 T 507 T T 200
Number of Monte Carlo Samples

*Cerutti, Kaplan, Kimmig, Sensoy, Handling Epistemic and Aleatory Uncertainties in Probabilistic Circuits,
Machine Learning, 2022
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(best closest to the diagonal)

Experimental evaluation of the
quality of the approximation in
assessing epistemic uncertainty

It provides a methodology for
calibration of the uncertainty
estimation

Theoretical guarantees (or even
whether they are possible) still
unclear and requires further
tnvestigations

*Cerutti, Kaplan, Kimmig, Sensoy, Handling Epistemic and Aleatory Uncertainties in Probabilistic Circuits,

Machine Learning, 2022

Kaplan and Ivanovska: Efficient belief propagation in second-order Bayesian networks for singly-connected graphs.

Int. J. Approx. Reason. 93: 132-152 (2018)
63



64

e |t tackles second-order correlation by looking at the covariances

e Leaves are still assumed to be independent. If that is not the case, leaves should
become Dirichlet distributions (see for instance Lance M. Kaplan, Magdalena Ivanovska:
Efficient belief propagation in second-order Bayesian networks for singly-connected
graphs. Int. J. Approx. Reason. 93: 132-152 (2018))

What about the dependencies in learning?



Evidential Parameter Learning
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CO—()

Ox = p(X = 1), By — p(¥ = 1| X = 1),
and Oy x = p(Y =1[ X =0)

N

Likelihood

Y

1 Qy‘y (1 — Qx)

0 (1-6yx) (1-6x)
1 Oyix Ox
0

1

0

1

(1—0yx) (1 —6x)
Oy|x Ox

|—l|—l|—lO|—lOO><

SN (1 - Oyix) 6x
Ax Ox /+\ Oy|x Ox
oo MAP from complete data leads to simple
/\4 decomposition
Ay Oy|x

P(Ox. Oy|x, Oy x) o< 037 (1 — Ox) xR O97x (1= Oyx)™x Qnyg (1—6yx)"™



CO—()

X Y Likelihood
Ox — p(X = 1), Oyjx — p(Y = 1| X = 1),
and Oy x = p(Y =1[ X =0) 0 1 Oyx(1-6x)
0 7 (1-6x)
+ ? 1 Qy‘x Ox + Qy‘y (1 — 9)()
e \ 70 1—(Byx Ox + Oyjx (1— 6x))
X e 1 1 Qy‘x QX
RN 10 (1-Oyx) O
/\X QX + 1 ? QX
oo MAP from complete data does not lead to
/\4 simple decomposition
Ay Ovix

p(6x. Oy |x. QY\Y) . 9;X+nyx+’WX (1 — Ox)xFvxtiyx gf;v& (1 — Oyx)"7x 9;’;‘; (1-— QYW)”T.

(Oyix Ox + Oyx (L= 0x))™ (1= (Byix Ox + Oyix (1= 6x))"

67



Learning with incomplete information:

e Bayesian Moment Matching: A. Rashwan, H. Zhao, and P. Poupart, “Online and

distributed Bayesian moment matching for parameter learning in sum-product
networks,” AISTAT 2016.

e EM + Gaussian approximation: Gelman, Andrew, John B. Carlin, Hal S. Stern, and
Donald B. Rubin. Bayesian data analysis. Chapman and Hall/CRC, 1995.

e EM + Fisher Information: Gelman, Andrew, John B. Carlin, Hal S. Stern, and Donald B.
Rubin. Bayesian data analysis. Chapman and Hall/CRC, 1995.
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Bayesian Moment Matching
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After t instantiation, let us presume the posterior is a product of Dirichlets, i.e,
n
. t
F01(0) ~ £(6]{ev}_y) where FO(0) = [ | [] Dir(Oxps, X))
i=1 pa;cPA;

and fitting a product of Dirichlets to the posterior after t + 1 instantiations, Le,

dp(e; 6
flerl(g Z Z Ox;|pa; apej )) f1(0), via the method of moments.

a;
Xi~€ti1 Paj~e€ti1 ilp

plec+1.6)

Z[1]
Z[o)
;H where Z[k; Ox|pa,] = jei‘pal_p(etﬂ; 0)f1(6)d6 and can be
computed in closed form by leveraging the properties of Dirichlet distributions.

. t
The first and second order moments of the parameters are mL_)‘pa_ = E[Oypa,] =
1 i !

(t) 2
Vx,-|pa,< =E Qx,-\pa ]

*A. Rashwan et. al, "Online and distributed Bayesian moment matching for parameter learning in sum-product

networks,” AISTAT 2016



EM for estimating means l@
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Estimate the parameters as the maximum a posteriori (MAP) estimate

6 = argmaxg log((P(X]6)f(0))

In the case of incomplete data, the logs do not break into chains of simple additions, hence
the need for a 2-step EM algorithm.

Step 1: Expectation. Q(6; 8") = ) log(P(X,, Xz; 0)f(6)) P(Xe| Xo; 6'9)
XgGX[

where X, are the unobserved latent variables and X, are the observed variables.

Step 2: Maximisation step, which updates the estimated parameters.
0" = argmax, Q(6; 6'9).

*Gelman, Andrew, John B. Carlin, Hal S. Stern, and Donald B. Rubin. Bayesian data analysis. Chapman and
Hall/CRC, 1995.
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Gaussian Approximation

Approximate the covartance matrix as
R=DT(DHDT)™ 1D,

where

1
H=~Jo+ Z mvep(et)v;—l?(et)<
t

=

Fisher Information
Approximate the covariance matrix as

R=D"(DJDT)'D.
where

=+ Y Y Vbl TTple)

t eck;

is the Fisher Information Matrix.

*Gelman, Andrew, John B. Carlin, Hal S. Stern, and Donald B. Rubin. Bayesian data analysis. Chapman and

Hall/CRC, 1995.



DeCBoD: 9-node DAG
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*Conrad D. Hougen, Lance M. Kaplan, Federico Cerutti, Alfred O. Hero Ill: Uncertain Bayesian Networks:

Learning from Incomplete Data. MLSP 2021: 1-6
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Ascertain Evidence from the Real World
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I ... cumulative net CO2 emissions over the last decade (2010-2019) are about the
same size as the 11 remaining carbon budget likely to limit warming to 1.5C (medium
confidence).

“PCC. Climate Change 2022: Impacts, Adaptation, and Vulnerability. Cambridge University Press; In press

n



=

e Frepikcon

Confidence
5E No Confidence 104
5D Low 8
6D ' 4D
6_
6C 5C 4C Some
7C 3C
44
7B 6B 5B 4B 3B High
8B 2B
SA | 7A 6A 5A 4A 3A 2A Total
A 1A\ 24
S s
s & F S 3 NI
g 3 S 5 PN
s & 5 B & & T
$ 2 <
& A8 S & &
¥ § 5 $ 0-
$ & ° 0.0
Likelihood

*Josang, Audun. Subjective Logic: A Formalism for Reasoning under Uncertainty. Springer, 2016.
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Uncertainty-Awareness

Change the loss function so to output pieces of evidences in favour of different classes that
should then be considered through Bayesian update resulting into a Dirichlet Distribution

*Sensoy, Murat, Lance Kaplan, and Melih Kandemir. “Evidential deep learning to quantify classification
uncertainty” Advances in Neural Information Processing Systems. 2018.
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From Evidence to Dirichlet

Let us now assume a Dirichlet distribution over K classes that is the result of Bayesian
update with N observations and starting with a uniform prior:

Dir(p | a)=Dir(p | (e1+1,e2+2,...,ex+1))

where ¢; is the number of observations (evidence) for the class k, and E ex = N.
k

Intuition.

Pieces of evidence for the various classes should be representative of the training samples
nearby (geodesic space, euclidian space, ...) a test sample
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D. uncertainty

B. Low aleatoric and Low epistemic
uncertainty

ES
Es

C. and Low epistemic
uncertainty

Tibetan mastiff: hitps/fpxhere.comen/photo/ 183177, public domain
Lion: httpsfpshere com/en/photo/875834 , public domain

Wolt. https/pxhere.com/en/photo/907321 public domain

12b/5 2 public domain

Dog




Dirichlet and Epistemic Uncertainty

The epistemic uncertainty associated to a Dirichlet distribution Dir(p | @) can be estimated
by

with K the number of classes and S = ap = Z ay is the Dirichlet strength.
k=1

Note that if the Dirichlet has been computed as the resulting of Bayesian update from a
uniform prior, 0 < v <1, and u = 1 implies that we are considering the uniform distribution
(an extreme case of Dirichlet distribution).

Ak
. ~ A
Let us denote with 1, = —.

)
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Loss function: two components

Multiple loss functions introduced, each with two components:

e one aims at minimising the prediction error;
e the other the number of pieces of evidence generated for each class, thus learning to

say / do not known when facing ambiguous datapoints.

*Sensoy, Murat, Lance Kaplan, and Melih Kandemir. “Evidential deep learning to quantify classification

uncertainty” Advances in Neural Information Processing Systems. 2018.
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Loss function: minimising the prediction error

If we then consider Dir(y; | a;) as the prior for a Multinomial p(y; | p;), we can then compute the
expected squared error (aka Brier score)
K

X
Ell|y; — NiHi] = ZED@ — 2y ik + HE] = Z)’fk — 2y kElpi i) + Elu?] =

k 1 k=1

= Z Yix = 2vikBlui i) + Elpi i + varli] =

K

= Z(yik — Bl «])? + varlpia] =

;

_ 7O(Ik O{lk ‘_alk)i

- Z(ylk S,) + 525+1) =

/Jlk(lfulk)
Si+1

>§H

= (Vik — fix)® +

T
(X

The authors provide other loss functions to minimise the prediction error.

*Sensoy, Murat, Lance Kaplan, and Melih Kandemir. “Evidential deep learning to quantify classification
uncertainty” Advances in Neural Information Processing Systems. 2018.
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Learning to say ‘I don't know"

To avoid generating evidence for all the classes when the network cannot classify a given
sample (epistemic uncertainty), we introduce a term in the loss function that penalises the
divergence from the uniform distribution:

N N
L = ) Li0)+ )y KL(Dir(u| &) || Dir(u; [ 1))
i=1 i=1

where:

e A, is another hyperparameter, and the suggestion is to use it parametric on the number of
- . t . o
training epochs, e.g. A; = min (1, m) with t the number of current training epoch, so that
the effect of the KL divergence is gradually increased to avoid premature convergence to the

uniform distribution in the early epoch where the learning algorithm still needs to explore the
parameter space;

e o; =y, +(1—y,) o are the Dirichlet parameters the neural network in a forward pass has put
on the wrong classes, and the idea is to minimise them as much as possible.

*Sensoy, Murat, Lance Kaplan, and Melih Kandemir. “Evidential deep learning to quantify classification
uncertainty” Advances in Neural Information Processing Systems. 2018.
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KL recap @b

Consider some unknown distribution p(x) and suppose that we have modelled this using
q(x). If we use g(x) instead of p(x) to represent the true values of x, the average additional

amount of information required is:

KL(p|lq) = —/p(x) lng(x)dx — (—/p(x) (n p(x)clx)

f/p(x) n Z:;(;}dx (2)

q(x)
= —E [ln m

This is known as the relative entropy or Kullback-Leibler divergence, or KL divergence

between the distributions p(x) and g(x).
Properties:

e KL(pllq) # KL(ql|p);
e KL(p||lg) > 0 and KL(p||g) =0 if and only if p = g
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K

K
+Y (@=1) | Y@ — | Y Gy

k=1 Jj=1

ZkKlaik

KL( Dir(u; | @) || Dir(ui | 1)) =
|_|k 11 (@i k)

|
where ((x) = dc— In(T(x)) is the diggmma function
X

*Sensoy, Murat, Lance Kaplan, and Melih Kandemir. “Evidential deep learning to quantify classification
uncertainty” Advances in Neural Information Processing Systems. 2018.



EDL and robustness to FGS Ié
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*Sensoy, Murat, Lance Kaplan, and Melih Kandemir. “Evidential deep learning to quantify classification
uncertainty” Advances in Neural Information Processing Systems. 2018.
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EDL + GAN for adversarial training
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*Sensoy, Murat, et al. “Uncertainty-Aware Deep Classifiers using Generative Models” AAAI 2020
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VAE + GAN

3

Hiddon layor 1

Reconstuctlayer

nputyer
784 newrons.

=+ € ~ N (0.G(2))

For each x; in training set, we sample a latent point z from go(z | x;) and perturb it by
€ ~ N(0, G(2)), where G(-) is a GAN with two discriminators D and D’.
The generated points are forced to be similar to the real latent points through making them

indistinguishable by D’ in the latent space of the VAE, while having the generated samples

to be distinguishable by D in the input space.

*Sensoy, Murat, et al. “Uncertainty-Aware Deep Classifiers using Generative Models” AAAI 2020



Robustness against FGS
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*Sensoy, Murat, et al. “Uncertainty-Aware Deep Classifiers using Generative Models” AAAI 2020
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Anomaly detection
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*Sensoy, Murat, et al. “Uncertainty-Aware Deep Classifiers using Generative Models” AAAI 2020
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Many other approaches

90

Prior networks: auxiliary dataset for out-of-distributions.
A. Malinin and M. Gales. Reverse KL-Divergence Training of Prior Networks: Improved
Uncertainty and Adversarial Robustness. In NeurlPS, 2019.

Posterior networks: using normalising flow for learning a latent representation of the input.
B. Charpentier, D. Ziigner, and S. Giinnemann. Posterior Network: Uncertainty Estimation
without OOD Samples via Density-Based Pseudo-Counts. In NeurlPS, pages 1356-1367,
2020.

Tutorials/Reviews

M. Abdar, et. al. A review of uncertainty quantification in deep learning: Techniques,
applications and challenges. Information Fusion, 76:243-297, 2021.

E. Hillermeter and W. Waegeman. Aleatoric and Epistemic Uncertainty in Machine
Learning: An Introduction to Concepts and Methods. Mach. Learn., 110(3):457-5006, 2021.



Summary and Conclusions



e Effective approximations for quantifying aleatory and epistemic uncertainty in reasoning

and learning

e Evidential reasoning introduces the idea of choosing either beta or Dirichlet
distributions to represent uncertain probabilities and then using efficient
methods—such as the the moment matching—for manipulating them

e Several research questions are left unanswered
e Efficient algorithms, in particular when it comes to parameter (and structure) learning in
probabilistic circuits
e When dealing with real-world problems, how to deal with an input which is classified with
high epistemic uncertainty: does it identify a new class?
e Evidential learning and reasoning in neuro-symbolic/neuro-programming architectures
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Announcements

Survey paper in the main conference

Federico Cerutti, Lance Kaplan, Murat Sensoy. Evidential Reasoning and Learning: a
Survey.

Scheduled on July 28th at 1000h in Lehar 1 — (12 min talk)
Poster session 2 at stand 318 row 9

University of Brescia, Italy, will open soon a 3-years RA/post-doc position on evidential
reasoning and learning.
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