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Announcements
Survey paper in the main conferenceFederico Cerutti, Lance Kaplan, Murat Sensoy. Evidential Reasoning and Learning: aSurvey.Scheduled on July 28th at 1000h in Lehar 1 – (12 min talk)Poster session 2, stand 318 row 9
University of Brescia, Italy, will open soon a 3-years RA/post-doc position on evidentialreasoning and learning.
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Introduction



Evidential Learning and Reasoning: quantifying aleatory and epistemic uncertainty inreasoning and learning while using very efficient approximations based uponthe idea of updating the Bayesian posterior in light of further evidencecollected in favour (or against) a hypothesis
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“ Even in simple collaboration scenarios, e.g. those in which an AI system assists
a human operator with predictions, the success of the team hinges on the human
correctly deciding when to follow the recommendations of the AI system and when
to override them. [. . . ]

Extracting benefits from collaboration with the AI system depends on the human
developing insights (i.e., a mental model) of when to trust the AI system with its
recommendations. [. . . ]

If the human mistakenly trusts the AI system in regions where it is likely to err,
catastrophic failures may occur. „

Bansal, Gagan, et al. “Beyond Accuracy: The Role of Mental Models in Human-AI Team Performance.” AAAIConference on Human Computation and Crowdsourcing. 2019.
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Guidelines for Human-AI Interaction
Initially Make clear what the system can do • Make clear how well the system cando what it can doDuring interaction Time services based on context • Show contextually relevantinformation • Match relevant social norms • Mitigate social biasesWhen wrong Support efficient invocation • Support efficient dismissal • Supportefficient correction • Scope services, when in doubt • Make clear why thesystem did what it didOver time Remember recent interactions • Learn from user behaviour • Update andadapt cautiously • Encourage granular feedback • Convey theconsequences of user actions • Provide global controls • Notify usersabout changes

https://aka.ms/aiguidelines

S. Amershi et. al., “Guidelines for Human-AI Interaction,” CHI 2019
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Misclassification of the white side of a trailer as bright sky: this caused a car operating withautomated vehicle control systems (level 2) to crash against a tractor-semitrailer truck nearWilliston, Florida, USA on 7th May 2016.The car driver died due to the sustained injury.The car manufacturer stated that the “camera failed to recognize the white truck against abright sky.”∗

∗http://tiny.cc/2tb4uy
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Requirements of Trustworthy AI
Human agency and oversight
Technical robustness and safety
Privacy and data governance
Transparency
Diversity, non-discrimination, and fairness
Societal and environmental wellbeing
Accountability

∗EUROPEAN COMMISSION, 2019. High-Level Expert Group on Artificial Intelligence.
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Outline
1. A primer in Bayesian Statistics:• Fundamentals of statistics and Bayes• Beta and Dirichlet distributions as uncertain probabilities.2. Evidential Reasoning:• From logic to probabilistic circuits;• Probabilistic circuits as a unifying method for probabilistic reasoning;• Probabilistic circuits with uncertain probabilities.3. Evidential Parameter Learning:• Learning with complete observations;• Learning with partial observations: preliminary proposals and discussions.4. Ascertain Evidence from the Real World:• Intelligence analysis and uncertainty• Evidential Deep Learning;• Alternative proposals.5. Summary and conclusion.
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A primer in Bayesian Statistics



X (resp. Y ) be a discrete random variable that can take values xi with i = 1, . . . ,M (resp. yjwith j = 1, . . . , L).The probability that X will take the value xi and Y will take the value yj is written
p(X = xi ,Y = yj ) and is called the joint probability of X = xi and Y = yj .
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Sum rule or marginalisation:
p(X = xi ) = L∑

j=1

p(X = xi ,Y = yj ) (5)
Product rule:

p(X = xi ,Y = yj ) = p(Y = yj |X = xi )p(X = xi ) (6)
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p(X,Y )

X

Y = 2

Y = 1

p(Y )

p(X)

X X

p(X |Y = 1)

∗Figs from Bishop, Christopher M. 2006. Pattern Recognition and Machine Learning. Berlin, Heidelberg:Springer-Verlag.13
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Sum and product rules apply to general random variables, not only discrete ones.
p(X ) =∑

Y

p(X ,Y ) (7)
p(X ,Y ) = p(Y |X )p(X ) (8)
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X and Y are said to be independent if p(X ,Y ) = p(X )p(Y ), i.e. p(X |Y ) = p(X ) and
p(Y |X ) = p(Y ).
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X be a continuous random variable
p(x ∈ (a, b)) = ∫ b

a

p(x )dx (9)
p(x ) ≥ 0 (10)

∫ ∞
−∞

p(x )dx = 1 (11)
The cumulative distribution function is defined by:

P(z ) = ∫ z

−∞
p(x )dx (12)
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xδx

p(x) P (x)

∗Fig from Bishop, Christopher M. 2006. Pattern Recognition and Machine Learning. Berlin, Heidelberg:Springer-Verlag.
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Given several continuous variables x = ⟨x1, . . . , xD⟩T , then we can define a joint probabilitydensity p(x ) = p(x1, . . . , xD ) such that the probability of x falling in an infinitesimal volume
δx containing the point x is given by p(x )δx , and

p(x ) ≥ 0 (13)
and ∫

p(x )dx = 1 (14)
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Sum and product rules for continuous random variables take the form:
p(x ) = ∫ p(x , y )dy (15)
p(x , y ) = p(y |x )p(x ) (16)
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The weighted average of the function f (x ) under a probability distribution p(x ), or
expectation of f (x ) is:

E[f ] =∑
x

p(x )f (x ) (17)
E[f ] = ∫ p(x )f (x )dx (18)

It can be approximate from N points drawn from the distribution
E[f ] ≃ 1

N

N∑
n=1

f (xn) (19)
In the case of functions of several variables,

Ex [f (x , y )] =∑
x

p(x )f (x , y ) (20)
20
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Variance of f (x ) var[f ] = E[(f (x )− E[f (x )])2] (22)
var[f ] = E[f (x )2]− E[f (x )]2 (23)
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For two random variables, the covariance expresses the extent to which they vary together,and is defined by: cov[x , y ] = Ex ,y [xy ]− E[x ]E[y ] (24)
In the case of vectors of random variables:

cov[x , y ] = Ex ,y [xyT]− E[x ]E[yT] (25)
Note that cov[x ] ≡ cov[x , x ].
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Bayes theorem

p(Y |X ) = p(X |Y )p(Y )
p(X ) (26)

where
p(X ) =∑

Y

p(X |Y )p(Y ) (27)
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p(H) Probability that a person with no known risk behaviour is infected with HIV(base rate): 0.01%
p(T | H) Probability that a test returns positive if the person is infected with HIV(sensitivity): 99.9%
p(T | H) Probability that a test returns negative if the person is not infected with HIV(specificity): 99.99%

∗Gerd Gigerenzer, Reckoning With Risk: Learning to Live With Uncertainty, Gardners Books, 2003
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p(H) Probability that a person with no known risk behaviour is infected with HIV(base rate): 0.01%
p(T | H) Probability that a test returns positive if the person is infected with HIV(sensitivity): 99.9%
p(T | H) Probability that a test returns negative if the person is not infected with HIV(specificity): 99.99%

p(H | T ) = p(T | H) · p(H)
p(T )

= p(T | H) · p(H)
p(T | H)p(H) + p(T | H) · p(H)

= 1
1 + 1

p(T |H)·p(H) · (1− p(T | H)) · (1− p(H))
∗Gerd Gigerenzer, Reckoning With Risk: Learning to Live With Uncertainty, Gardners Books, 2003
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p(H) Probability that a person with no known risk behaviour is infected with HIV(base rate): 0.01%
p(T | H) Probability that a test returns positive if the person is infected with HIV(sensitivity): 99.9%
p(T | H) Probability that a test returns negative if the person is not infected with HIV(specificity): 99.99%

p(H | T ) = 1
1 + 1

p(T |H)·p(H) · (1− p(T | H)) · (1− p(H))
= 1

1 + 1
999
103 · 1

104
· (1− 9999

104 ) · (1− 1
104 ) = 1

1 + 108

9990 ·
1

104 · 9999
104

= 1
1 + 9999

9990

≃ 1
2

∗Gerd Gigerenzer, Reckoning With Risk: Learning to Live With Uncertainty, Gardners Books, 2003
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Imagine 10,000 people whoare not in any known riskcategory. One is infected(base rate) and will testpositive with practicalcertainty (sensitivity). Ofthe 9,999 people who arenot infected, another onewill also test positive (falsepositive rate). So we canexpect that about twopeople will test positive.

10,000people
1HIV 9,999no HIV

1pos 0neg 1pos(false pos)
9,998neg

∗Gerd Gigerenzer, Reckoning With Risk: Learning to Live With Uncertainty, Gardners Books, 2003
25
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Given the parameters of our model w , we can capture our assumptions about w , beforeobserving the data, in the form of a prior probability distribution p(w ). The effect of theobserved data D = {t1, . . . , tN} is expressed through the conditional p(D |w ), hence Bayestheorem takes the form:
p(w |D ) =

likelihood︷ ︸︸ ︷
p(D |w ) prior︷︸︸︷

p(w )
p(D ) (29)

posterior ∝ likelihood · prior (30)
p(D ) = ∫ p(D |w )p(w )dw (31)

It ensures that the posterior distribution on the left-hand side is a valid probability density and integrates to one.
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Frequentist paradigm• w is considered to be a fixed parameter,whose values is determined by someform of estimator, e.g. the maximum
likelihood in which w is set to the valuethat maximises p(D |w )• Error bars on this estimate are obtainedby considering the distribution ofpossible data sets D .• The negative log of the likelihoodfunction is called an error function: thenegative log is a monotonicallydecreasing function hence maximisingthe likelihood is equivalent tominimising the error.

Bayesian paradigm• There is only one single data set D (theone observed) and the uncertainty in theparameters is expressed through aprobability distribution over w .• The inclusion of prior knowledge arisesnaturally: suppose that a fair-lookingcoin is tossed three times and landsheads each time. A classical maximumlikelihood estimate of the probability oflanding heads would give 1.There are cases where you want toreduce the dependence on the prior,hence using noninformative priors.
27



Binary variable: Bernoulli
Let us consider a single binary random variable x ∈ {0, 1}, e.g. flipping coin, not necessaryfair, hence the probability is conditioned by a parameter 0 ≤ µ ≤ 1:

p(x = 1|µ) = µ (32)
The probability distribution over x is known as the Bernoulli distribution:

Bern(x |µ) = µx (1− µ)1−x (33)
E[x ] = µ (34)
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Now suppose that we have a data set of observations x = ⟨x1, . . . , xN⟩T drawnindependently from a Bernoulli distribution (iid) whose mean µ is unknown, and we wouldlike to determine this parameter from the data set.
p(D |µ) = N∏

n=1

p(xn|µ) = N∏
n=1

µxn (1− µ)1−xn (36)
Let’s maximise the (log)-likelihood to identify the parameter (log simplifies and reduces risksof underflow):

ln p(D |µ) = N∑
n=1

ln p(xn|µ) = N∑
n=1

{xn ln µ + (1− xn) ln(1− µ)} (37)
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The log likelihood depends on the N observations xn only through their sum ∑
n

xn , hence
the sum provides an example of a sufficient statistics for the data under this distribution
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ddµ ln p(D |µ) = 0
N∑

n=1

xn
µ −

1− xn
1− µ = 0

N∑
n=1

xn − µ
µ(1− µ) = 0

N∑
n=1

xn = Nµ

(38)

µML = 1
N

N∑
n=1

xn (39)
aka sample mean. Risk of overfit: consider to toss the coin three times and each time is head
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In order to develop a Bayesian treatment to the overfit problem of the maximum likelihoodestimator for the Bernoulli. Since the likelihood takes the form of the product of factors ofthe form µx (1− µ)1−x , if we choose a prior to be proportional to powers of µ and (1− µ) thenthe posterior distribution, proportional to the product of the prior and the likelihood, willhave the same functional form as the prior. This property is called conjugacy.
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Binary variables: Beta distribution
Beta(µ|a, b) = Γ(a + b)Γ(a)Γ(b)µa−1(1− µ)b−1 (43)

with Γ(x ) ≡ ∫ ∞
0

ux−1e−udu (44)
E[µ] = a

a + b
(45)

var[µ] = ab(a + b)2(a + b + 1) (46)
a and b are hyperparameters controlling the distribution of parameter µ.
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Considering a beta distribution prior and the Bernulli likelihood function, and given
l = N −m

p(µ|m, l , a, b) ∝ µm+a−1(1− µ)l+b−1 (47)
Hence p(µ|m, l , a, b) is another beta distribution and we can rearrange the normalisationcoefficient as follows:

p(µ|m, l , a, b) = Γ(m + a + l + b)Γ(m + a)Γ(l + b)µm+a−1(1− µ)l+b−1 (48)
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# Day Phenomenon
1 T2 T3 F4 F5 F6 F7 F8 F9 F10 F

π: true—unknown—probability of the phenomenon in agiven period of time
Let y be the number of occurrence of the phenomenon perperiod of time (m = 2)
Likelihood: f (y |π) = π · π · (1− π) · · · (1− π) = π2 · (1− π)8
g (π|y ) ∝ g (π) · f (y |π)
The conjugate of a binomial is the Beta distribution. If:
g (π; a, b) = Beta(a, b) = Γ(a + b)Γ(a) + Γ(b)πa−1(1− π)b−1

then: g (π|y ) = Beta(m + a, l + b)
If a = b = 1 (uniform prior), then g (π|y ) = Beta(m + 1, l + 1)In the example, g (π|m = 2, l = 8) = Beta(3, 9)
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X1 ∼ Beta(3, 9)

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

E [X1] = 0.2500
Var (X1) = 1.4423 · 10−2

95% Confidence Interval:[0.0602, 0.5178]

X2 ∼ Beta(21, 81)

0.0 0.2 0.4 0.6 0.8 1.0

0

2

4

6

8

10

E [X2] = 0.2059
Var (X2) = 1.5873 · 10−3

95% Confidence Interval:[0.1336, 0.2891]

X3 ∼ Beta(201, 801)

0.0 0.2 0.4 0.6 0.8 1.0

0

5

10

15
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30

E [X3] = 0.2006
Var (X3) = 1.5988 · 10−4

95% Confidence Interval:[0.1764, 0.2259]
Although E [X1] ≃ E [X2] ≃ E [X3] ≃ 0.2they represent remarkably different random variables

36 ∗ Y-axes of the graphs are misaligned for better graphical representation.



Epistemic vs Aleatoric uncertainty

Aleatoric uncertaintyVariability in the outcome of an experimentwhich is due to inherently random effects(e.g. flipping a fair coin): no additionalsource of information but Laplace’s daemoncan reduce such a variability.

Epistemic uncertaintyEpistemic state of the agent using the model,hence its lack of knowledge that—inprinciple—can be reduced on the basis ofadditional data samples.It is a general property of Bayesian learningthat, as we observe more and more data, theepistemic uncertainty represented by theposterior distribution will steadily decrease(the variance decreases).
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https://tinyurl.com/5hets659
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Multinomial variables: categorical distribution
Let us suppose to roll a dice with K = 6 faces. An observation of this variable x equivalentto x3 = 1 (e.g. the number 3 with face up) can be:

x = ⟨0, 0, 1, 0, 0, 0⟩T (49)
Note that such vectors must satisfy K∑

k=1

xk = 1.
p(x |µ) = K∏

k=1

µxkk (50)
where µ = ⟨µ1, . . . , µK ⟩T , nad the parameters µk are such that µk ≥ 0 and ∑

k

µk = 1.
Generalisation of the Bernoulli
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p(D |µ) = N∏
n=1

K∏
k=1

µxnkk (52)
The likelihood depends on the N datapoints only through the K quantities

mk =∑
n

xnk (53)
which represent the number of observations of xk = 1 (e.g. with k = 3, the third face of thedice). These are called the sufficient statistics for this distribution.
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Finding the maximum likelihood requires a Lagrange multiplier that
K∑

k=1

mk ln µk + λ
(

K∑
k=1

µk − 1

) (54)
Hence

µML
k = mk

N
(55)

which is the fraction of N observations for which xk = 1.
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Lagrange multiplier
∇f(x)

∇g(x)

xA

g(x) = 0

∇g (x ) must be orthogonal to the surface.Consider a point x that lies on the surface and anearby point x + ε that also lies on the surface.The Taylor expansion around x gives
g (x + ε) ≃ g (x ) + εT∇g (x ).Because both x and x + ε lie on the surface,
g (x ) ≃ g (x + ε), hence εT∇g (x ) ≃ 0. Because ε isparallel to the surface, ∇g must be normal to thesurface.Given the point x∗, lying on the surface, be a maximumfor f . ∇f must also be normal to the surface.Thus ∇f and ∇g are parallel (or anti-parallel) vectors,and so there must exist a parameter λ such that
∇f + λ∇g = 0.∗Fig from Bishop, Christopher M. 2006. Pattern Recognition and Machine Learning. Berlin, Heidelberg:Springer-Verlag.42
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Multinomial variables: the Dirichlet distribution
The Dirichlet distribution is the generalisation of the beta distribution to K dimensions.

Dir(µ|α ) = Γ(α0)Γ(α1) · · ·Γ(αK ) K∏
k=1

µαk−1
k (56)

such that ∑
k

µk = 1, α = ⟨α1, . . . , αK ⟩T , αk ≥ 0 and
α0 = K∑

k=1

αk (57)
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Considering a Dirichlet distribution prior and the categorical likelihood function, theposterior is then:
p(µ|D ,α ) = Dir(µ|α + m) =

= Γ(α0 + N)Γ(α1 + m1) · · ·Γ(αK + mK ) K∏
k=1

µαk+mk−1
k

(58)
The uniform prior is given by Dir(µ|1) and the Jeffreys’ non-informative prior is given byDir(µ|⟨0.5, . . . , 0.5⟩T).The marginals of a Dirichlet distribution are beta distributions.
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Evidential Reasoning



burglary.
earthquake.
hears_alarm(john).
alarm :- burglary.
alarm :- earthquake.
calls(john) :- alarm, hears_alarm(john).
evidence(calls(john)).
query(burglary).

alarm↔ burglary ∨ earthquake
calls(john)↔ alarm ∧ hears_alarm(john)

calls(john)

∗D. Fierens, et. al.. ‘Inference and Learning in Probabilistic Logic Programs Using Weighted Boolean Formulas’.TPLP 2015.
46



alarm↔ burglary ∨ earthquake
calls(john)↔ alarm ∧ hears_alarm(john)

calls(john)

alarm→ burglary ∨ earthquake ¬alarm ∨ burglary ∨ earthquake
alarm← burglary ∨ earthquake ¬burglary ∨ alarm

¬earthquake ∨ alarm
calls(john)→ alarm ¬calls(john) ∨ alarm
calls(john)→ hear_alarm(john) ¬calls(john) ∨ hear_alarm(john)
calls(john)← alarm ∧ hear_alarm(john) ¬alarm ∨ ¬hear_alarm(john) ∨ calls(john)
calls(john) calls(john)
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CNF(alarm ∨ ¬burglary)∧(alarm ∨ ¬calls(john))∧(alarm ∨ ¬earthquake)∧(hear_alarm(john) ∨ ¬calls(john))∧(burglary ∨ earthquake ∨ ¬alarm)∧(calls(john) ∨ ¬alarm ∨ ¬hear_alarm(john))∧
calls(john)

NNF(alarm ∨ (¬burglary ∧ ¬earthquake))∧((alarm ∧ hear_alarm(john)) ∨ ¬calls(john))∧(burglary ∨ earthquake ∨ ¬alarm)∧(calls(john) ∨ ¬alarm ∨ ¬hear_alarm(john))∧
calls(john)
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A sentence in negation normal form (NNF) over a set of propositional variables V is a rooted,directed acyclic graph where each leaf node is labeled with true (⊤), false (⊥), or a literal ofa variable in V, and each internal node with disjunction (∨) or conjunction (∧).
Decomposable: for each conjunction node no two children φi and φj share any variable.
Deterministic: for each disjunction node each pair of different children φi and φj is logicallycontradictory, that is φi ∧ φj |= ⊥ for i ̸= j ; i.e., only one child can be true at any time.
Smooth: for each disjunction nodeeach disjunct φi mentions the same variables,
Vars(φi ) = Vars(φj ) for i ̸= j .It is hard to ensure decomposability. It is also hard to ensure determinism while preservingdecomposability. Yet any sentence in NNF can be smoothed in polytime, while preservingdecomposability and determinism.

∗Darwiche and Marquis, A Knowledge Compilation Map, JAIR 17 (2002) 229–264
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Decomposable: for each conjunction nodeno two children φi and φj share anyvariable.
Deterministic: for each disjunction nodeeach pair of different children φi and φjis logically contradictory, that is
φi ∧ φj |= ⊥ for i ̸= j ; i.e., only one childcan be true at any time.
Smooth: for each disjunction node eachdisjunct φi mentions the same variables,
Vars(φi ) = Vars(φj ) for i ̸= j .

a a

c(j) c(j)

b b

h(j)

eh(j)

∧∧

∨

e

∧

∨

∧

∨

∧

∧

∨

∧

∨

∗Darwiche and Marquis, A Knowledge Compilation Map, JAIR 17 (2002) 229–264
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Model counting (CT) is important

Given a query q ⊆ L and I(q) = {I | I ∈M(T ) ∧ q ⊆ I} the set of interpretations wherethe query is true, then the probabilistic inference task is:
PROB(q) = ∑

I∈I(q)
∏
l∈I

p(l ). (1)

∗A. Kimmig, G. Van den Broeck, and L. De Raedt. Algebraic model counting. Journal of Applied Logic, 22:46–62,2017.
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Darwiche & Marquis

¬¬XX ¬¬YY ¬¬ZZ

and

or

and andand

Figure 3: A sentence in language MODS.

NNF

d-NNF s-NNF f-NNF

sd-DNNF

DNNF

CO,      CE, ME

d-DNNF

VA, IM, CT

EQ?

CNFDNF

IP PI
CO , CE, EQ,    SE, MEVA, IM,   EQ, SE

BDD

FBDD EQ?

OBDD<

SE

MODS

EQ, SE

VA, IM

OBDD

EQ

Figure 4: The set of DAG-based languages considered in this paper. An edge L1 → L2 means that
L1 is a proper subset of L2. Next to each subset, we list the polytime queries supported
by the subset but not by any of its ancestors (see Section 4).

Figure 3 depicts a sentence in MODS. As we show later, MODS is the most tractable NNF subset we
shall consider (together with OBDD<). This is not surprising since from the syntax of a sentence in
MODS, one can immediately recover the sentence models.

The languages we have discussed so far are depicted in Figure 4, where arrows denote set inclusion.
Table 1 lists the acronyms of all of these languages, together with their descriptions. Table 2 lists
the key language properties discussed in this section, together with a short description of each.

3. On the Succinctness of Compiled Theories

We have discussed more than a dozen subsets of the NNF language. Some of these subsets are well
known and have been studied extensively in the computer science literature. Others, such as DNNF

(Darwiche, 2001a, 1999) and d-DNNF (Darwiche, 2001b), are relatively new. The question now is:
What subset should one adopt for a particular application? As we argue in this paper, that depends

234

L1 → L2 means that L1 is a proper subset of L2 .Next to each subset, polytime queries supported by the subset but notby any of its proper supersets.

A Knowledge Compilation Map

Notation Query

CO polytime consistency check
VA polytime validity check
CE polytime clausal entailment check
IM polytime implicant check
EQ polytime equivalence check
SE polytime sentential entailment check
CT polytime model counting
ME polytime model enumeration

Table 4: Notations for queries.

L CO VA CE IM EQ SE CT ME

NNF ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
DNNF

√ ◦ √ ◦ ◦ ◦ ◦ √

d-NNF ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
s-NNF ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
f-NNF ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
d-DNNF

√ √ √ √
? ◦ √ √

sd-DNNF
√ √ √ √

? ◦ √ √

BDD ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
FBDD

√ √ √ √
? ◦ √ √

OBDD
√ √ √ √ √ ◦ √ √

OBDD<
√ √ √ √ √ √ √ √

DNF
√ ◦ √ ◦ ◦ ◦ ◦ √

CNF ◦ √ ◦ √ ◦ ◦ ◦ ◦
PI

√ √ √ √ √ √ ◦ √

IP
√ √ √ √ √ √ ◦ √

MODS
√ √ √ √ √ √ √ √

Table 5: Subsets of the NNF language and their corresponding polytime queries.
√

means “satisfies”
and ◦ means “does not satisfy unless P = NP.”

Table 4 summarizes the queries we are interested in and their acronyms.
The following proposition states what we know about the availability of polytime algorithms for

answering the above queries, with respect to all languages we introduced in Section 2.

Proposition 4.1 The results in Table 5 hold.

The results of Proposition 4.1 are summarized in Figure 4. One can draw a number of conclusions
based on the results in this figure. First, NNF, s-NNF, d-NNF, f-NNF, and BDD fall in one equivalence
class that does not support any polytime queries and CNF satisfies only VA and IM; hence, none
of them qualifies as a target compilation language in this case. But the remaining languages all
support polytime tests for consistency and clausal entailment. Therefore, simply imposing either
of smoothness (s-NNF), determinism (d-NNF), flatness (f-NNF), or decision (BDD) on the NNF lan-
guage does not lead to tractability with respect to any of the queries we consider—neither of these
properties seem to be significant in isolation. Decomposability (DNNF), however, is an exception and
leads immediately to polytime tests for both consistency and clausal entailment, and to a polytime
algorithm for model enumeration.
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Notation Query

CO polytime consistency check
VA polytime validity check
CE polytime clausal entailment check
IM polytime implicant check
EQ polytime equivalence check
SE polytime sentential entailment check
CT polytime model counting
ME polytime model enumeration

Table 4: Notations for queries.

L CO VA CE IM EQ SE CT ME

NNF ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
DNNF

√ ◦ √ ◦ ◦ ◦ ◦ √

d-NNF ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
s-NNF ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
f-NNF ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
d-DNNF

√ √ √ √
? ◦ √ √

sd-DNNF
√ √ √ √

? ◦ √ √

BDD ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
FBDD

√ √ √ √
? ◦ √ √

OBDD
√ √ √ √ √ ◦ √ √

OBDD<
√ √ √ √ √ √ √ √

DNF
√ ◦ √ ◦ ◦ ◦ ◦ √

CNF ◦ √ ◦ √ ◦ ◦ ◦ ◦
PI

√ √ √ √ √ √ ◦ √

IP
√ √ √ √ √ √ ◦ √

MODS
√ √ √ √ √ √ √ √

Table 5: Subsets of the NNF language and their corresponding polytime queries.
√

means “satisfies”
and ◦ means “does not satisfy unless P = NP.”

Table 4 summarizes the queries we are interested in and their acronyms.
The following proposition states what we know about the availability of polytime algorithms for

answering the above queries, with respect to all languages we introduced in Section 2.

Proposition 4.1 The results in Table 5 hold.

The results of Proposition 4.1 are summarized in Figure 4. One can draw a number of conclusions
based on the results in this figure. First, NNF, s-NNF, d-NNF, f-NNF, and BDD fall in one equivalence
class that does not support any polytime queries and CNF satisfies only VA and IM; hence, none
of them qualifies as a target compilation language in this case. But the remaining languages all
support polytime tests for consistency and clausal entailment. Therefore, simply imposing either
of smoothness (s-NNF), determinism (d-NNF), flatness (f-NNF), or decision (BDD) on the NNF lan-
guage does not lead to tractability with respect to any of the queries we consider—neither of these
properties seem to be significant in isolation. Decomposability (DNNF), however, is an exception and
leads immediately to polytime tests for both consistency and clausal entailment, and to a polytime
algorithm for model enumeration.
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Darwiche & Marquis

¬¬XX ¬¬YY ¬¬ZZ

and

or

and andand

Figure 3: A sentence in language MODS.

NNF

d-NNF s-NNF f-NNF

sd-DNNF

DNNF

CO,      CE, ME

d-DNNF

VA, IM, CT

EQ?

CNFDNF

IP PI
CO , CE, EQ,    SE, MEVA, IM,   EQ, SE

BDD

FBDD EQ?

OBDD<

SE

MODS

EQ, SE

VA, IM

OBDD

EQ

Figure 4: The set of DAG-based languages considered in this paper. An edge L1 → L2 means that
L1 is a proper subset of L2. Next to each subset, we list the polytime queries supported
by the subset but not by any of its ancestors (see Section 4).

Figure 3 depicts a sentence in MODS. As we show later, MODS is the most tractable NNF subset we
shall consider (together with OBDD<). This is not surprising since from the syntax of a sentence in
MODS, one can immediately recover the sentence models.

The languages we have discussed so far are depicted in Figure 4, where arrows denote set inclusion.
Table 1 lists the acronyms of all of these languages, together with their descriptions. Table 2 lists
the key language properties discussed in this section, together with a short description of each.

3. On the Succinctness of Compiled Theories

We have discussed more than a dozen subsets of the NNF language. Some of these subsets are well
known and have been studied extensively in the computer science literature. Others, such as DNNF

(Darwiche, 2001a, 1999) and d-DNNF (Darwiche, 2001b), are relatively new. The question now is:
What subset should one adopt for a particular application? As we argue in this paper, that depends
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L1 → L2 means that L1 is a proper subset of L2 .Next to each subset, polytime queries supported by thesubset but not by any of its proper supersets.

A Knowledge Compilation Map

L NNF DNNF d-DNNF sd-DNNF FBDD OBDD OBDD< DNF CNF PI IP MODS

NNF ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤
DNNF 6≤∗ ≤ ≤ ≤ ≤ ≤ ≤ ≤ 6≤∗ ? ≤ ≤
d-DNNF 6≤∗ 6≤∗ ≤ ≤ ≤ ≤ ≤ 6≤∗ 6≤∗ ? ? ≤
sd-DNNF 6≤∗ 6≤∗ ≤ ≤ ≤ ≤ ≤ 6≤∗ 6≤∗ ? ? ≤
FBDD 6≤ 6≤ 6≤ 6≤ ≤ ≤ ≤ 6≤ 6≤ 6≤ 6≤ ≤
OBDD 6≤ 6≤ 6≤ 6≤ 6≤ ≤ ≤ 6≤ 6≤ 6≤ 6≤ ≤
OBDD< 6≤ 6≤ 6≤ 6≤ 6≤ 6≤ ≤ 6≤ 6≤ 6≤ 6≤ ≤
DNF 6≤ 6≤ 6≤ 6≤ 6≤ 6≤ 6≤ ≤ 6≤ 6≤ ≤ ≤
CNF 6≤ 6≤ 6≤ 6≤ 6≤ 6≤ 6≤ 6≤ ≤ ≤ 6≤ ≤
PI 6≤ 6≤ 6≤ 6≤ 6≤ 6≤ 6≤ 6≤ 6≤ ≤ 6≤ ?

IP 6≤ 6≤ 6≤ 6≤ 6≤ 6≤ 6≤ 6≤ 6≤ 6≤ ≤ ≤
MODS 6≤ 6≤ 6≤ 6≤ 6≤ 6≤ 6≤ 6≤ 6≤ 6≤ 6≤ ≤

Table 3: Succinctness of target compilation languages. ∗ means that the result holds unless the
polynomial hierarchy collapses.

NNF

DNNF

CNFd-DNNF

DNF

PI

FBDD

OBDD<

IP

MODS

sd-DNNF =

OBDD

Figure 5: An edge L1 → L2 indicates that L1 is strictly more succinct than L2: L1 < L2, while
L1 = L2 indicates that L1 and L2 are equally succinct: L1 ≤ L2 and L2 ≤ L1. Dotted
arrows indicate unknown relationships; for instance, the dotted arrow from DNNF to PI

means that we do not know whether DNNF is at least as succinct as PI. Some of the edges
are conditioned on the polynomial hierarchy not collapsing—see Table 3.

sd-DNNF (which is more succinct than the influential FBDD, OBDD and OBDD< languages) with MODS,
which is a most tractable language. Both sd-DNNF and MODS are smooth, deterministic and de-
composable. MODS, however, is flat and obtains its decomposability from the stronger condition
of simple-conjunction. Therefore, sd-DNNF can be viewed as the result of relaxing from MODS the
flatness and simple-conjunction conditions, while maintaining decomposability, determinism and
smoothness. Relaxing these conditions moves the language three levels up the succinctness hierar-
chy, although it compromises only the polytime test for sentential entailment and possibly the one
for equivalence as we show in Section 4.
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L1 → L2 indicates that L1 is strictly more succint (spaceefficient) than L2 . Dotted arrows indicate unkwnownrelationships.

∗Darwiche and Marquis, A Knowledge Compilation Map, JAIR 17 (2002) 229–264
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Sentential Decision Diagrams

1252 Theory of Computing Systems (2019) 63:1250–1277

representable by SDDs of polynomial size but with exponential FBDD size (see
Section 4). This result answers a question posed by Beame and Liew (see Discussion
in [2]) in the affirmative whether SDDs are ever more concise than so-called decision-
DNNFs which are also restricted d-DNNFs considered in database theory in the
context of probabilistic databases. (See, e.g., [20] for a discussion on the importance
of decision-DNNFs in model counting, the problem to compute the number of satis-
fying assignments of a Boolean formula.) There exists a quasipolynomial simulation
of decision-DNNFs by equivalent FBDDs [1]. Moreover, Beame and Liew showed
that SDDs are sometimes exponentially less concise than FBDDs [2]. Therefore, we
can conclude that SDDs and FBDDs are incomparable w.r.t. polynomial-size repre-
sentations (see also Fig. 2). In other words, P(SDD) is not a subset of P(FBDD) and
vice versa. Because of the simulation mentioned above the same holds for SDDs and
decision-DNNFs. Furthermore, we prove that SDDs are even more powerful w.r.t.
polynomial-size representations than k-OBDDs, where k is a constant (see Section 5).
For this result we use a polynomial transformation from k-OBDDs for constant k into
equivalent unambiguous nondeterministic OBDDs. To the best of our knowledge it
is unknown whether the set of Boolean functions representable by polynomial-size
unambiguous nondeterministic OBDDs, or ∨1-OBDDs for short, that have exactly
one accepting computation for every satisfying input is a subset of P(SDD) (see also
Fig. 1). One of our main results is the proof that every Boolean function f for which
f and its negated function f can be represented by polynomial-size unambiguous
nondeterministic OBDDs w.r.t. the same variable ordering can also be represented by
SDDs of polynomial size (see Section 3). This result is sufficient to prove that P(k-
OBDD)⊆ P(SDD). Adapting a result from Sauerhoff that nondeterministic OBDDs
where all nondeterministic decisions are made at the beginning of the computations
are less powerful w.r.t. polynomial-size representation than general nondeterministic
OBDDs [25], we can strengthen our result to P(k-OBDD)� P(SDD).

Fig. 1 On the relative succinctness of SDDs and (unambiguous nondeterministic) OBDDs

SDDs provide a canonicalrepresentation of apropositional sentence, i.e. thereis a unique SDD for anypropositional sentence under agiven variable order.Manipulating SDDs is thuseasier.However, they are less succintthan d-DNFs.
∗Fig. from Bollig, B., Buttkus, M. On the Relative Succinctness of Sentential Decision Diagrams. Theory ComputSyst 63, 1250–1277 (2019).
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0.1::burglary. ...
0.2::earthquake. evidence(calls(john)).
0.7::hears_alarm(john). query(burglary).
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∗D. Fierens, et. al.. ‘Inference and Learning in Probabilistic Logic Programs Using Weighted Boolean Formulas’.TPLP 2015.
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0.1::burglary. 0.7::hears_alarm(john). evidence(calls(john)).
0.2::earthquake. ... query(burglary).

1

ρ( a ) = 1
λ1 = 1

1

ρ( a ) = 1
λ1 = 1

2

ρ( c(j) ) = 1
λ2 = 1

2

ρ( c(j) ) = 1
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p(burglary | calls(john)) = p(burglary ∧ calls(john))
p(calls(john))

∗D. Fierens, et. al.. ‘Inference and Learning in Probabilistic Logic Programs Using Weighted Boolean Formulas’.TPLP 2015.
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Connection with Sum-Product Networks
An SPN consists of a rooted, directed, acyclic graph. Each leaf in the SPN graph is atractable distribution over a single random variable. Each interior node is either a sum node,which computes a weighted sum of its children in the graph, or a product node, whichcomputes the product of its children.For discrete domains, every decomposable and smooth NNF can be represented as anequivalent SPN with fewer or equal nodes and edges.

1. If the root is not a sum node, set the root to a new sum node whose single child is the former root.2. For each sum node, set the initial weights of all outgoing edges to 1.3. For each leaf, find the first sum node on each path to the root and multiply its outgoing edgeweight along that path by the parameter value. (Do not multiply the same edge weight by anygiven parameter more than once, even if that edge occurs in multiple paths to the root.)4. Replace each leaf with a deterministic univariate distribution, P(v ) = 1.
∗Rooshenas and Lowd, Learning Sum-Product Networks with Direct and Indirect Variable Interactions,ICML2014.
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More and more research in the field. . .Kisa, D., Van den Broeck, G., Choi, A. and Darwiche, A., 2014, May. Probabilistic sententialdecision diagrams. In Fourteenth International Conference on the Principles of KnowledgeRepresentation and Reasoning.Dang, M., Vergari, A., Broeck, G.. (2020). Strudel: Learning Structured-DecomposableProbabilistic Circuits. Proceedings of the 10th International Conference on ProbabilisticGraphical Models, 138:137-148.
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ω2 : : bu rg la ry .
ω3 : : ear thquake .
ω4 : : hears_alarm ( j ohn ) .alarm :− burg la ry .alarm :− earthquake .c a l l s ( j ohn ) :− alarm , \hears_alarm ( j ohn ) .e v idence ( c a l l s ( j ohn ) ) .query ( burg la ry ) .

Identifier Beta parameters
ω1 Beta(∞, 1) False
ω1 Beta(1,∞) True
ω2 Beta(2, 18) A burglary happened
ω2 Beta(18, 2) A burglary did not happen
ω3 Beta(2, 8) . . .
ω3 Beta(8, 2)
ω4 Beta(3.5, 1.5)
ω4 Beta(1.5, 3.5)

∗Cerutti, Kaplan, Kimmig, Şensoy, Handling Epistemic and Aleatory Uncertainties in Probabilistic Circuits,Machine Learning, 2022
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Let n be a ⊕-gate over C nodes, its children. . .
Let n be a ⊗-gate over C nodes, its children

E[Xn ] = ∏
c∈C

E[Xc ],
cov[Xn ] ≃

∑
c∈C

∑
c ′∈C

E[Xn ]2
E[Xc ]E[Xc ′ ] cov[Xc ,Xc ′ ],

cov[Xn,Xz ] ≃
∑
c∈C

E[Xn ]
E[Xc ] cov[Xc ,Xz ] for z ∈ N̂A \ {n}.

Conditioning:
E
[
Xr

Xr̂

]
≃ E[Xr ]

E[Xr̂ ] ,
cov [Xr

Xr̂

]
≃ 1

E[Xr̂ ]2 cov[Xr ] + E[Xr ]2
E[Xr̂ ]4 cov[Xr̂ ]− 2

E[Xr ]
E[Xr̂ ]3 cov[Xr ,Xr̂ ].

∗Cerutti, Kaplan, Kimmig, Şensoy, Handling Epistemic and Aleatory Uncertainties in Probabilistic Circuits,Machine Learning, 2022
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∗Cerutti, Kaplan, Kimmig, Şensoy, Handling Epistemic and Aleatory Uncertainties in Probabilistic Circuits,Machine Learning, 2022
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Experimental evaluation of thequality of the approximation inassessing epistemic uncertainty
It provides a methodology forcalibration of the uncertaintyestimation
Theoretical guarantees (or evenwhether they are possible) stillunclear and requires furtherinvestigations

∗Cerutti, Kaplan, Kimmig, Şensoy, Handling Epistemic and Aleatory Uncertainties in Probabilistic Circuits,Machine Learning, 2022Kaplan and Ivanovska: Efficient belief propagation in second-order Bayesian networks for singly-connected graphs.Int. J. Approx. Reason. 93: 132-152 (2018)
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• It tackles second-order correlation by looking at the covariances• Leaves are still assumed to be independent. If that is not the case, leaves shouldbecome Dirichlet distributions (see for instance Lance M. Kaplan, Magdalena Ivanovska:Efficient belief propagation in second-order Bayesian networks for singly-connectedgraphs. Int. J. Approx. Reason. 93: 132-152 (2018))

What about the dependencies in learning?
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Evidential Parameter Learning



YX

θX → p(X = 1), θY |X → p(Y = 1 | X = 1),and θY |X → p(Y = 1 | X = 0)
+

×

λX θX +
×

λY θY |X

. . .

. . .

X Y Likelihood
0 1 θY |X (1− θX )
0 0 (1− θY |X ) (1− θX )
1 1 θY |X θX
0 0 (1− θY |X ) (1− θX )
1 1 θY |X θX
1 0 (1− θY |X ) θX
1 1 θY |X θX... ... ...MAP from complete data leads to simpledecomposition

p(θX , θY |X , θY |X ) ∝ θnYX+nYX

X (1− θX )nYX+nYX θnYXY |X (1− θY |X )nYX θnYX

Y |X (1− θY |X )nYX
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YX

θX → p(X = 1), θY |X → p(Y = 1 | X = 1),and θY |X → p(Y = 1 | X = 0)
+

×

λX θX +
×

λY θY |X

. . .

. . .

X Y Likelihood
0 1 θY |X (1− θX )
0 ? (1− θX )? 1 θY |X θX + θY |X (1− θX )? 0 1− (θY |X θX + θY |X (1− θX ))
1 1 θY |X θX
1 0 (1− θY |X ) θX
1 ? θX... ... ...MAP from complete data does not lead tosimple decomposition

p(θX , θY |X , θY |X ) ∝ θnX+nYX+nYX

X (1− θX )nX+nYX+nYX θnYXY |X (1− θY |X )nYX θnYX

Y |X (1− θY |X )nYX ·
· (θY |X θX + θY |X (1− θX ))nY (1− (θY |X θX + θY |X (1− θX )))nY67



Learning with incomplete information:
• Bayesian Moment Matching: A. Rashwan, H. Zhao, and P. Poupart, “Online anddistributed Bayesian moment matching for parameter learning in sum-productnetworks,” AISTAT 2016.
• EM + Gaussian approximation: Gelman, Andrew, John B. Carlin, Hal S. Stern, andDonald B. Rubin. Bayesian data analysis. Chapman and Hall/CRC, 1995.
• EM + Fisher Information: Gelman, Andrew, John B. Carlin, Hal S. Stern, and Donald B.Rubin. Bayesian data analysis. Chapman and Hall/CRC, 1995.
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Bayesian Moment Matching
After t instantiation, let us presume the posterior is a product of Dirichlets, i.e.,
f (t)(θ) ≈ f (θ|{et ′}tt ′=1) where f (t)(θ) = n∏

i=1

∏
pai∈PAi

Dir (θXi |pai ; α (t)
Xi |pai

)
and fitting a product of Dirichlets to the posterior after t + 1 instantiations, i.e.,
f (t+1)(θ) = ( ∑

xi∼et+1

∑
pai∼et+1

θxi |pai
∂p(e; θ)
∂θxi |pai

)
︸ ︷︷ ︸

p(et+1 ;θ)
f (t)(θ), via the method of moments.

The first and second order moments of the parameters are m
(t)
xi |pai

= E [θxi |pai ] = Z [1]
Z [0] ,

v
(t)
xi |pai

= E [θ2
xi |pai ] = Z [2]

Z [0] , where Z [k ;θxi |pai ] = ∫ θkxi |paip(et+1; θ)f (t)(θ)dθ and can becomputed in closed form by leveraging the properties of Dirichlet distributions.
∗A. Rashwan et. al., “Online and distributed Bayesian moment matching for parameter learning in sum-productnetworks,” AISTAT 2016
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EM for estimating means
Estimate the parameters as the maximum a posteriori (MAP) estimate
θ = argmaxθ log((P(X |θ)f (θ))In the case of incomplete data, the logs do not break into chains of simple additions, hencethe need for a 2-step EM algorithm.
Step 1: Expectation. Q(θ; θ(t)) = ∑

Xℓ∈Xℓ

log(P(Xo ,Xℓ ; θ)f (θ))P(Xℓ |Xo ; θ(t))
where Xℓ are the unobserved latent variables and Xo are the observed variables.
Step 2: Maximisation step, which updates the estimated parameters.
θ(t+1) = argmaxθQ(θ; θ(t)).

∗Gelman, Andrew, John B. Carlin, Hal S. Stern, and Donald B. Rubin. Bayesian data analysis. Chapman andHall/CRC, 1995.
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Gaussian ApproximationApproximate the covariance matrix as
R = DT (DHDT )−1D,

where
H ≈ J0 +∑

t

1
p2(et )∇θp(et )∇T

θ p(et ).

Fisher InformationApproximate the covariance matrix as
R = DT (DJDT )−1D.

where
J = J0 +∑

t

∑
e ′∈Et

1
p2(e ′)∇θp(e ′)∇T

θ p(e ′)
is the Fisher Information Matrix.

∗Gelman, Andrew, John B. Carlin, Hal S. Stern, and Donald B. Rubin. Bayesian data analysis. Chapman andHall/CRC, 1995.
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∗Conrad D. Hougen, Lance M. Kaplan, Federico Cerutti, Alfred O. Hero III: Uncertain Bayesian Networks:Learning from Incomplete Data. MLSP 2021: 1-6
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Ascertain Evidence from the Real World



“ . . . cumulative net CO2 emissions over the last decade (2010-2019) are about the
same size as the 11 remaining carbon budget likely to limit warming to 1.5C (medium
confidence). „

∗PCC. Climate Change 2022: Impacts, Adaptation, and Vulnerability. Cambridge University Press; In press
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∗Josang, Audun. Subjective Logic: A Formalism for Reasoning under Uncertainty. Springer, 2016.
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Uncertainty-Awareness

Change the loss function so to output pieces of evidences in favour of different classes thatshould then be considered through Bayesian update resulting into a Dirichlet Distribution

∗Sensoy, Murat, Lance Kaplan, and Melih Kandemir. “Evidential deep learning to quantify classificationuncertainty.” Advances in Neural Information Processing Systems. 2018.
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From Evidence to Dirichlet
Let us now assume a Dirichlet distribution over K classes that is the result of Bayesianupdate with N observations and starting with a uniform prior:

Dir(µ | α ) = Dir(µ | ⟨e1 + 1, e2 + 2, . . . , eK + 1⟩)
where ei is the number of observations (evidence) for the class k , and ∑

k

ek = N .
Intuition.Pieces of evidence for the various classes should be representative of the training samples
nearby (geodesic space, euclidian space, . . . ) a test sample
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A. Low aleatoric and Low epistemic 
uncertainty

B. Low aleatoric and Low epistemic 
uncertainty

C. High aleatoric and Low epistemic 
uncertainty

D. High epistemic uncertainty

Tibetan mastiff: https://pxhere.com/en/photo/183177,  public domain
Lion: https://pxhere.com/en/photo/875834 , public domain
Wolf: https://pxhere.com/en/photo/907321 public domain

Dog: https://www.flickr.com/photos/volvob12b/51822282992 public domain



Dirichlet and Epistemic Uncertainty
The epistemic uncertainty associated to a Dirichlet distribution Dir(µ | α ) can be estimatedby

u = K

S

with K the number of classes and S = α0 = K∑
k=1

αk is the Dirichlet strength.
Note that if the Dirichlet has been computed as the resulting of Bayesian update from auniform prior, 0 ≤ u ≤ 1, and u = 1 implies that we are considering the uniform distribution(an extreme case of Dirichlet distribution).
Let us denote with µ̂k ≜

αk
S

.
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Loss function: two components

Multiple loss functions introduced, each with two components:
• one aims at minimising the prediction error;• the other the number of pieces of evidence generated for each class, thus learning tosay I do not known when facing ambiguous datapoints.

∗Sensoy, Murat, Lance Kaplan, and Melih Kandemir. “Evidential deep learning to quantify classificationuncertainty.” Advances in Neural Information Processing Systems. 2018.
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Loss function: minimising the prediction error
If we then consider Dir(µi | αi ) as the prior for a Multinomial p(y i | µi ), we can then compute theexpected squared error (aka Brier score)

E[∥∥y i − µi

∥∥2
2] = K∑

k=1

E[y2
i ,k − 2yi ,kµi ,k + µ2

i ,k ] = X∑
k=1

y2
i ,k − 2yi ,kE[µi ,k ] + E[µ2

i ,k ] =
= K∑

k=1

y2
i ,k − 2yi ,kE[µi ,k ] + E[µi ,k ]2 + var[µi ,k ] =

= K∑
k=1

(yi ,k − E[µi ,k ])2 + var[µi ,k ] =
= K∑

k=1

(
yi ,k −

αi ,k
Si

)2 + αi ,k (Si − αi ,k )
S2
i (Si + 1) =

= K∑
k=1

(yi ,k − µ̂i ,k )2 + µ̂i ,k (1− µ̂i ,k )2
Si + 1

The authors provide other loss functions to minimise the prediction error.∗Sensoy, Murat, Lance Kaplan, and Melih Kandemir. “Evidential deep learning to quantify classificationuncertainty.” Advances in Neural Information Processing Systems. 2018.
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Learning to say “I don’t know”
To avoid generating evidence for all the classes when the network cannot classify a givensample (epistemic uncertainty), we introduce a term in the loss function that penalises thedivergence from the uniform distribution:

L = N∑
i=1

Li (θ) + λt
N∑
i=1

KL ( Dir(µi | α̃i ) || Dir(µi | 1) )
where:

• λt is another hyperparameter, and the suggestion is to use it parametric on the number oftraining epochs, e.g. λt = min(1, tCONST) with t the number of current training epoch, so thatthe effect of the KL divergence is gradually increased to avoid premature convergence to theuniform distribution in the early epoch where the learning algorithm still needs to explore theparameter space;• α̃i = y i + (1− y i ) · αi are the Dirichlet parameters the neural network in a forward pass has puton the wrong classes, and the idea is to minimise them as much as possible.∗Sensoy, Murat, Lance Kaplan, and Melih Kandemir. “Evidential deep learning to quantify classificationuncertainty.” Advances in Neural Information Processing Systems. 2018.
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KL recap
Consider some unknown distribution p(x ) and suppose that we have modelled this using
q(x ). If we use q(x ) instead of p(x ) to represent the true values of x , the average additionalamount of information required is:

KL(p||q) = −
∫

p(x ) ln q(x )dx − (− ∫ p(x ) ln p(x )dx)
= −

∫
p(x ) ln{q(x )

p(x )
}dx

= −E
[ln q(x )

p(x )
] (2)

This is known as the relative entropy or Kullback-Leibler divergence, or KL divergencebetween the distributions p(x ) and q(x ).Properties:• KL(p||q) ̸≡ KL(q||p);• KL(p||q) ≥ 0 and KL(p||q) = 0 if and only if p = q
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KL ( Dir(µi | α̃i ) || Dir(µi | 1) ) = ln( Γ(∑K
k=1 α̃i ,k )Γ(K )∏K
k=1 Γ(α̃i ,k )

)+ K∑
k=1

(α̃i ,k−1) ψ(α̃i ,k )−ψ
 K∑

j=1

α̃i ,j


where ψ(x ) = ddx ln ( Γ(x ) ) is the digamma function

∗Sensoy, Murat, Lance Kaplan, and Melih Kandemir. “Evidential deep learning to quantify classificationuncertainty.” Advances in Neural Information Processing Systems. 2018.
84

image: Freepik.com



EDL and robustness to FGS

∗Sensoy, Murat, Lance Kaplan, and Melih Kandemir. “Evidential deep learning to quantify classificationuncertainty.” Advances in Neural Information Processing Systems. 2018.
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EDL + GAN for adversarial training

∗Sensoy, Murat, et al. “Uncertainty-Aware Deep Classifiers using Generative Models.” AAAI 2020
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Uncertainty-Aware Deep Classifiers using Generative Models
Murat Şensoy1,2, Lance Kaplan3, Federico Cerutti4,5, Maryam Saleki2

1Blue Prism AI Labs, London, UK
2Department of Computer Science, Özyeğin University, Istanbul, Turkey

3US Army Research Lab, Adelphi, MD 20783, USA
4Department of Information Engineering, University of Brescia, 25123 Brescia, Italy

5Cardiff University, Cardiff, CF10 3AT, UK

Motivation

Dirichlet Distributions and Evidence
Dirichlet distribution represents the likelihood 
of each possible categorical distribution over 
the labels for the classification of the sample.

Generative Evidential Networks
Each output of the network predicts evidence for a category k as a relative 
density of the sample with respect to a reference distribution (Pout) using the 
sigmoid function in a noise contrastive estimation (NCE) setting. 

We evaluated our approach in two steps. First, we evaluated the proposed approach (GEN) with respect to existing benchmarks for uncertainty quantification in deep
classifiers. Second, we evaluated its performance in out-of-distribution samples with respect to recent anomaly detection methods.

Evaluation

Uncertainty Quantification Benchmarks

Anomaly Detection Benchmarks

In this work, we proposed to combine ideas from implicit density models, noise constructive density estimation, and evidential deep learning in a novel way to quantify
classification uncertainty in neural networks. We also proposed to generate out-of-distribution samples by combining the strengths of VAEs and GANs. The generated
examples are used for learning an implicit density model of the training data, which is then utilized to generate pseudocounts (i.e., evidence) for Dirichlet parameters.

Through extensive experiments with well-studied datasets and comprehensive comparisons with recent approaches, we show that our approach significantly enhances
the state of the art in two uncertainty estimation benchmarks: i) detection of out-of-distribution samples, and ii) robustness to adversarial examples.

Conclusions

Recently, approaches such as evidential 
deep learning (EDL) have been proposed 
to quantify uncertainty of deep classifiers 
without costly sampling methods. 
However, these approaches may be 
overconfident when their inputs are far 
from the class boundaries. 

In this paper, we extend  EDL with the 
noise-contrastive training and deep 
generative models to address this 
problem. 

Uniform Dirichlet prior is updated with 
evidence to calculate the  posterior 
Dirichlet distribution. Total evidence =

Generating Out-of-Distribution Samples

VAE + GAN

G

D' D

For each data point in latent space, we generate a new noisy sample, which is similar
to it to some extent. Hence, we avoid mode-collapse problem.

The noise distribution (OoD samples) should be close to the data distribution; 
otherwise, the classification problem will be too easy and the density ratios will 
be trivially predicted without learning the actual structure of the data. Similarly, 
if the noise distribution is too close to the data distribution, the density ratio 
would be trivially one and the learning will be deprived.

G:  Generator in the latent space of VAE
D’: Discriminator in the latent space
D : Discriminator in the input space   

The evidence for samples along the decision boundary in the data distribution 
(Pin) is also regularized using KL-divergence.

Figure 2: Original training samples (top), samples recon-
structed by the VAE (middle), and the samples generated by
the proposed method (bottom) over a number of epochs.

for high dimensional data by maximizing

max
q✓,p�

NX

i=1

Eq✓(z|xi)

⇥
log p�(xi | z) � KL(q✓(z | xi) || p(z))

⇤
,

(7)
where q✓(z | xi) is the latent space distribution for each sam-
ple xi and p�(xi | z) is the decoder likelihood distribution
that is maximized for each sample xi. The KL term enforces
q✓(z | xi) to be close to a prior distribution p(z) and have a
denser latent space.

Proximity of the encoded samples in the latent space of a
VAE is commonly used as an indication of their semantic sim-
ilarity and exploited for few-shot classification and anomaly
detection tasks. In this work, we also use the latent space of a
VAE as a proxy for semantic similarity between samples in in-
put space. Hence, we exploit it to generate out-of-distribution
samples, which are similar to, but at the same time clearly
separable from, the training examples in the input space.

For each xi in training set, we sample a latent point z from
q✓(z | xi) and perturb it by ✏ ⇠ q�(✏|z), which is imple-
mented as a multivariate Gaussian distribution N (0, G(z)),
where G(·) is a fully connected neural network with non-
negative output that is trained via

max
G

E q✓(z|xi),
q�(✏|z),

p�(x̄i|z+✏)

⇥
log D0(z + ✏)| {z }

(a)

+ log(1 � D(x̄i)| {z }
(b)

)
⇤
, (8)

where x̄i ⇠ p�(x̄i | z +✏) is the decoded out-of-distribution
sample from the perturbed sample z + ✏. The discriminators
D and D0 are binary classifiers with sigmoid output that try
to distinguish real samples from the generated ones. That
is, given an input, a discriminator gives as an output the
probability that the sample is from the training set distribution.
In Eq. 8, (a) forces the generated points to be similar to the
real latent points through making them indistinguishable by
D0 in the latent space of the VAE and (b) encourages the
generated samples to be distinguishable by D in the input
space. The discriminators are optimized via

max
D0

log D0(z) + log(1 � D0(z + ✏)),| {z }
(c)

(9)

max
D

log D(xi) + log(1 � D(x̄i)). (10)

Note that (c) of Eq. 9 is also included in the objective of the
VAE (Eq. 8) to adapt the latent space during the training of
the generator. We trained the VAE, generator, and discrimi-
nators by iterating between maximizing Eq. 7 through Eq. 10
until convergence, as in the regular training of generator and

discriminator in GANs. We demonstrate this approach in
Fig 1 (c) and Fig. 2, where a number of real and generated
MNIST images are shown.

Evaluation
To be able to compare our approach with the recent work, we
adopted the same strategy used for evaluation in (Louizos
and Welling 2017; Sensoy, Kaplan, and Kandemir 2018;
Pawlowski et al. 2017). That is, we use LeNet-5 (LeCun
et al. 1998) with ReLu non-linearities and max pooling as the
neural network architecture and evaluated our approach with
MNIST and CIFAR10 datasets, to be able to make a fair com-
parison with the most related recent work. We implemented
our approach 1 using Python and Tensorflow.

In this section, we compared our approach with the fol-
lowing approaches: (a) L2 corresponds to the standard neu-
ral nets with softmax probabilities and L2 regularization,
(b) Dropout refers to the Bayesian model used in (Gal
and Ghahramani 2016a), (c) Deep Ensemble refers to the
model proposed in (Lakshminarayanan, Pritzel, and Blun-
dell 2017), (d) FFG refers to the Bayesian model used
in (Kingma, Salimans, and Welling 2015) with the additive
parametrization (Molchanov, Ashukha, and Vetrov 2017),
(e) MNFG2 refers to the variational approximation based
model in (Louizos and Welling 2017), (f) EDL refers to the
model in (Sensoy, Kaplan, and Kandemir 2018), (g) BBH3

refers to the Bayesian model based on implicit weight uncer-
tainty (Pawlowski et al. 2017), and (h) GEN refers to the
proposed approach.

Predictive Uncertainty Estimation
We used the network architectures in Table 1 to train our
model for the MNIST dataset. For CIFAR10, we used the
same architectures; however, the classifier uses 192 filters for
Conv1 and Conv2, also has 1000 neurons in FC1 as described
in (Louizos and Welling 2017). We used L2 regularization
with coefficient 0.005 in the fully-connected layers. Other
approaches are also trained using the same classifier archi-
tecture with the priors and posteriors described in (Louizos
and Welling 2017) and (Pawlowski et al. 2017). The classi-
fication accuracy of each model on the MNIST test set can
be seen at Table 2. While we do not explicitly aim for high
classification accuracy, our results indicate that our approach
is doing better than most of the other approaches.

We train models for MNIST using the images from 10 digit
categories from the training set as usual. However, we then
tested these models on notMNIST dataset,4 which contains
10 letters A-J instead of digits. For CIFAR10, we trained
models using the training data from the first five categories
(referred to as CIFAR5) and tested these models using the
images from the last five categories. For both MNIST and CI-
FAR10, the predicted label for any test sample is guaranteed
to be wrong, since test samples are coming from a different
distribution than the one for the training set. Hence, an ideal

1A demo can be found at https://muratsensoy.github.io/gen.html
2https://github.com/AMLab-Amsterdam/MNF_VBNN
3https://github.com/pawni/BayesByHypernet
4https://www.kaggle.com/lubaroli/notmnist

For each x i in training set, we sample a latent point z from qθ (z | x i ) and perturb it by
ε ∼ N (0,G (z )), where G (·) is a GAN with two discriminators D and D ′.The generated points are forced to be similar to the real latent points through making themindistinguishable by D ′ in the latent space of the VAE, while having the generated samplesto be distinguishable by D in the input space.

∗Sensoy, Murat, et al. “Uncertainty-Aware Deep Classifiers using Generative Models.” AAAI 2020
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Robustness against FGS

∗Sensoy, Murat, et al. “Uncertainty-Aware Deep Classifiers using Generative Models.” AAAI 2020
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Anomaly detection

(mnist) (cifar10)
∗Sensoy, Murat, et al. “Uncertainty-Aware Deep Classifiers using Generative Models.” AAAI 2020
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Many other approaches
Prior networks: auxiliary dataset for out-of-distributions.A. Malinin and M. Gales. Reverse KL-Divergence Training of Prior Networks: ImprovedUncertainty and Adversarial Robustness. In NeurIPS, 2019.
Posterior networks: using normalising flow for learning a latent representation of the input.B. Charpentier, D. Zügner, and S. Günnemann. Posterior Network: Uncertainty Estimationwithout OOD Samples via Density-Based Pseudo-Counts. In NeurIPS, pages 1356–1367,2020.
Tutorials/ReviewsM. Abdar, et. al. A review of uncertainty quantification in deep learning: Techniques,applications and challenges. Information Fusion, 76:243–297, 2021.E. Hüllermeier and W. Waegeman. Aleatoric and Epistemic Uncertainty in MachineLearning: An Introduction to Concepts and Methods. Mach. Learn., 110(3):457–506, 2021.
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Summary and Conclusions



• Effective approximations for quantifying aleatory and epistemic uncertainty in reasoningand learning• Evidential reasoning introduces the idea of choosing either beta or Dirichletdistributions to represent uncertain probabilities and then using efficientmethods—such as the the moment matching—for manipulating them• Several research questions are left unanswered• Efficient algorithms, in particular when it comes to parameter (and structure) learning inprobabilistic circuits• When dealing with real-world problems, how to deal with an input which is classified withhigh epistemic uncertainty: does it identify a new class?• Evidential learning and reasoning in neuro-symbolic/neuro-programming architectures
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Announcements
Survey paper in the main conferenceFederico Cerutti, Lance Kaplan, Murat Sensoy. Evidential Reasoning and Learning: aSurvey.Scheduled on July 28th at 1000h in Lehar 1 – (12 min talk)Poster session 2 at stand 318 row 9
University of Brescia, Italy, will open soon a 3-years RA/post-doc position on evidentialreasoning and learning.
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